Advertisement

Medical & Biological Engineering & Computing

, Volume 50, Issue 2, pp 183–192 | Cite as

Patient-specific simulations of transcatheter aortic valve stent implantation

  • C. Capelli
  • G. M. Bosi
  • E. Cerri
  • J. Nordmeyer
  • T. Odenwald
  • P. Bonhoeffer
  • F. Migliavacca
  • A. M. Taylor
  • S. Schievano
Original Article

Abstract

Transcatheter aortic valve implantation (TAVI) enables treatment of aortic stenosis with no need for open heart surgery. According to current guidelines, only patients considered at high surgical risk can be treated with TAVI. In this study, patient-specific analyses were performed to explore the feasibility of TAVI in morphologies, which are currently borderline cases for a percutaneous approach. Five patients were recruited: four patients with failed bioprosthetic aortic valves (stenosis) and one patient with an incompetent, native aortic valve. Three-dimensional models of the implantation sites were reconstructed from computed tomography images. Within these realistic geometries, TAVI with an Edwards Sapien stent was simulated using finite element (FE) modelling. Engineering and clinical outcomes were assessed. In all patients, FE analysis proved that TAVI was morphologically feasible. After the implantation, stress distribution showed no risks of immediate device failure and geometric orifice areas increased with low risk of obstruction of the coronary arteries. Maximum principal stresses in the arterial walls were higher in the model with native outflow tract. FE analyses can both refine patient selection and characterise device mechanical performance in TAVI, overall impacting on procedural safety in the early introduction of percutaneous heart valve devices in new patient populations.

Keywords

Stent finite element analysis Aortic valve stenosis Transcatheter implantation Patient-specific 

Notes

Acknowledgments

CC is funded by the British Heart Foundation. TO is funded by the EU Marie Currie Intra European Fellowship within the 7th European Community Framework Programme. AMT is funded by the UK National Institute for Child Health, the UK Department of Health, Siemens Medical Solutions and the Fondation Leducq. SS is funded by the Royal Academy of Engineering/EPSRC.

References

  1. 1.
    Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097–1112PubMedCrossRefGoogle Scholar
  2. 2.
    Auricchio F, Di Loreto M, Sacco E (2001) Finite-element analysis of a stenotic artery revascularization through a stent insertion. Comput Methods Biomech Biomed Eng 4:249–263CrossRefGoogle Scholar
  3. 3.
    Azadani AN, Jaussaud N, Matthews PB, Ge L, Chuter TAM, Tseng EE (2010) Transcatheter aortic valves inadequately relieve stenosis in small degenerated bioprostheses. Interact Cardiovasc Thorac Surg 11:70–77PubMedCrossRefGoogle Scholar
  4. 4.
    Azadani AN, Tseng EE (2010) Transcatheter valve-in-valve implantation for failing bioprosthetic valves. Future Cardiol 6:811–831PubMedCrossRefGoogle Scholar
  5. 5.
    Bonhoeffer P, Boudjemline Y, Saliba Z, Merckx J, Aggoun Y, Bonnet D, Acar P, Le Bidois J, Sidi D, Kachaner J (2000) Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 356:1403–1405PubMedCrossRefGoogle Scholar
  6. 6.
    Buellesfeld L, Windecker S (2011) Transcatheter aortic valve implantation: the evidence is catching up with reality. Eur Heart J 32:133–137PubMedCrossRefGoogle Scholar
  7. 7.
    Carabello BA (2010) Percutaneous therapy for valvular heart disease a huge advance and a huge challenge to do it right. Circulation 121:1798–1799PubMedCrossRefGoogle Scholar
  8. 8.
    Conti CA, Votta E, Della Corte A, Del Viscovo L, Bancone C, Cotrufo M, Redaelli A (2010) Dynamic finite element analysis of the aortic root from MRI-derived parameters. Med Eng Phys 32:212–221PubMedCrossRefGoogle Scholar
  9. 9.
    Cribier A, Eltchaninoff H, Bash A, Borenstein N, Tron C, Bauer F, Derumeaux G, Anselme F, Laborde F, Leon MB (2002) Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis—first human case description. Circulation 106:3006–3008PubMedCrossRefGoogle Scholar
  10. 10.
    De Beule M, Mortier P, Carlier SG, Verhegghe B, Van Impe R, Verdonck P (2008) Realistic finite element-based stent design: the impact of balloon folding. J Biomech 41:383–389PubMedCrossRefGoogle Scholar
  11. 11.
    Delgado V, Ewe SH, Ng ACT, van der Kley F, Marsan NA, Schuijf JD, Schalij MJ, Bax JJ (2010) Multimodality imaging in transcatheter aortic valve implantation: key steps to assess procedural feasibility. Eurointervention 6:643–652PubMedCrossRefGoogle Scholar
  12. 12.
    Dwyer HA, Matthews PB, Azadani A, Ge L, Guy TS, Tseng EE (2009) Migration forces of transcatheter aortic valves in patients with noncalcific aortic insufficiency. J Thorac Cardiovasc Surg 138:1227–1233PubMedCrossRefGoogle Scholar
  13. 13.
    Gervaso F, Capelli C, Petrini L, Lattanzio S, Di Virgilio L, Migliavacca F (2008) On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J Biomech 41:1206–1212PubMedCrossRefGoogle Scholar
  14. 14.
    Godin M, Borz B, Tron C, Durand E, Doguet F, Litzler P-Y, Bessou J-P, Cribier A, Eltchaninoff H (2011) Transcatheter aortic valve implantation with the Edwards valve prosthesis in patients with low (<20%) logistic Euroscore: results of a prospective Single Center Registry. Eur Heart J 32:903Google Scholar
  15. 15.
    Gurvitch R, Cheung A, Bedogni F, Webb JG (2011) Coronary obstruction following transcatheter aortic valve-in-valve implantation for failed surgical bioprostheses. Catheter Cardiovasc Interv 77:439–444PubMedCrossRefGoogle Scholar
  16. 16.
    Jones JM, O’Kane H, Gladstone DJ, Sarsam MAI, Campalani G, MacGowan SW, Cleland J, Cran GW (2001) Repeat heart valve surgery: risk factors for operative mortality. J Thorac Cardiovasc Surg 122:913–918PubMedCrossRefGoogle Scholar
  17. 17.
    Kahlert P, Eggebrecht H, Plicht B, Kraff O, McDougall I, Decker B, Erbel R, Ladd ME, Quick HH (2010) Towards real-time cardiovascular magnetic resonance-guided transarterial aortic valve implantation: in vitro evaluation and modification of existing devices. J Cardiovasc Magn Reson 12Google Scholar
  18. 18.
    Labrosse MR, Beller CJ, Mesana T, Veinot JP (2009) Mechanical behavior of human aortas: experiments, material constants and 3-d finite element modeling including residual stress. J Biomech 42:996–1004PubMedCrossRefGoogle Scholar
  19. 19.
    Lee JM, Boughner DR, Courtman DW (1984) The glutaraldehyde-stabilized porcine aortic-valve xenograft. II. Effect of fixation with or without pressure on the tensile viscoelastic properties of the leaflet material. J Biomed Mater Res 18:79–98PubMedCrossRefGoogle Scholar
  20. 20.
    Leipsic J, Gurvitch R, LaBounty TM, Min JK, Wood D, Johnson M, Ajlan AM, Wijesinghe N, Webb JG (2011) Multidetector computed tomography in transcatheter aortic valve implantation. J Am Coll Cardiol Imaging 4:416–429Google Scholar
  21. 21.
    Leon MB, Piazza N, Nikolsky E, Blackstone EH, Cutlip DE, Kappetein AP, Krucoff MW, Mack M, Mehran R, Miller C, Morel M-a, Petersen J, Popma JJ, Takkenberg JJM, Vahanian A, van Es G-A, Vranckx P, Webb JG, Windecker S, Serruys PW (2011) Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials a consensus report from the valve academic research consortium. J Am Coll Cardiol 57:253–269PubMedCrossRefGoogle Scholar
  22. 22.
    Loree HM, Grodzinsky AJ, Park SY, Gibson LJ, Lee RT (1994) Static circumferential tangential modulus of human atherosclerotic tissue. J Biomech 27:195–204PubMedCrossRefGoogle Scholar
  23. 23.
    Nicosia MA, Cochran RP, Einstein DR, Rutland CJ, Kunzelman KS (2003) A coupled fluid-structure finite element model of the aortic valve and root. J Heart Valve Dis 12:781–789PubMedGoogle Scholar
  24. 24.
    Okamoto RJ, Wagenseil JE, DeLong WR, Peterson SJ, Kouchoukos NT, Sundt TM (2002) Mechanical properties of dilated human ascending aorta. Ann Biomed Eng 30:624–635PubMedCrossRefGoogle Scholar
  25. 25.
    Otto CM (2008) Calcific aortic stenosis—time to look more closely at the valve. N Engl J Med 359:1395–1398PubMedCrossRefGoogle Scholar
  26. 26.
    Padala M, Sarin E, Willis P, Babaliaros V, Block P, Guyton R, Thourani V (2010) An engineering review of transcatheter aortic valve technologies. Cardiovasc Eng Technol 1:77–87CrossRefGoogle Scholar
  27. 27.
    Piazza N, Bleiziffer S, Brockmann G, Hendrick R, Deutsch M-A, Opitz A, Mazzitelli D, Tassani-Prell P, Schreiber C, Lange R (2011) Transcatheter aortic valve implantation for failing surgical aortic bioprosthetic valve from concept to clinical application and evaluation (part 2). JACC Cardiovasc Interv 4:733–742PubMedCrossRefGoogle Scholar
  28. 28.
    Ranga A, Mongrain R, Galaz RM, Biadillah Y, Cartier R (2004) Large-displacement 3d structural analysis of an aortic valve model with nonlinear material properties. J Med Eng Technol 28:95–103PubMedCrossRefGoogle Scholar
  29. 29.
    Ricotta JJ, Pagan J, Xenos M, Alemu Y, Einav S, Bluestein D (2008) Cardiovascular disease management: the need for better diagnostics. Med Biol Eng Comput 46:1059–1068PubMedCrossRefGoogle Scholar
  30. 30.
    Rodes-Cabau J, Webb JG, Cheung A, Ye J, Dumont E, Feindel CM, Osten M, Natarajan MK, Velianou JL, Martucci G, DeVarennes B, Chisholm R, Peterson MD, Lichtenstein SV, Nietlispach F, Doyle D, DeLarochelliere R, Teoh K, Chu V, Dancea A, Lachapelle K, Cheema A, Latter D, Horlick E (2010) Transcatheter aortic valve implantation for the treatment of severe symptomatic aortic stenosis in patients at very high or prohibitive surgical risk acute and late outcomes of the multicenter canadian experience. J Am Coll Cardiol 55:1080–1090PubMedCrossRefGoogle Scholar
  31. 31.
    Schievano S, Capelli C, Young C, Lurz P, Nordmeyer J, Owens C, Bonhoeffer P, Taylor AM (2011) Four-dimensional computed tomography: a method of assessing right ventricular outflow tract and pulmonary artery deformations throughout the cardiac cycle. Eur Radiol 21:36–45PubMedCrossRefGoogle Scholar
  32. 32.
    Schievano S, Migliavacca F, Coats L, Khambadkone S, Carminati M, Wilson N, Deanfield JE, Bonhoeffer P, Taylor AM (2007) Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from mr data. Radiology 242:490–497PubMedCrossRefGoogle Scholar
  33. 33.
    Schievano S, Taylor AM, Capelli C, Coats L, Walker F, Lurz P, Nordmeyer J, Wright S, Khambadkone S, Tsang V, Carminati M, Bonhoeffer P (2010) First-in-man implantation of a novel percutaneous valve: a new approach to medical device development. Eurointervention 5:745–750PubMedCrossRefGoogle Scholar
  34. 34.
    Schievano S, Taylor AM, Capelli C, Lurz P, Nordmeyer J, Migliavacca F, Bonhoeffer P (2010) Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation. J Biomech 43:687–693PubMedCrossRefGoogle Scholar
  35. 35.
    Schoenhagen P, Hill A, Kelley T, Popovic Z, Halliburton SS (2011) In vivo imaging and computational analysis of the aortic root. Application in clinical research and design of transcatheter aortic valve systems. J Cardiovasc Trans Res 4:459–469CrossRefGoogle Scholar
  36. 36.
    Smith CR, Leon MB, Mack MJ, Miller C, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Williams M, Dewey T, Kapadia S, Babaliaros V, Thourani VH, Corso P, Pichard AD, Bavaria JE, Herrmann HC, Akin JJ, Anderson WN, Wang D, Pocock SJ, Investigators PT (2011) Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 364:2187–2198PubMedCrossRefGoogle Scholar
  37. 37.
    Sun W, Li K, Sirois E (2010) Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. J Biomech 43:3085–3090PubMedCrossRefGoogle Scholar
  38. 38.
    Taylor CA, Figueroa CA (2009) Patient-specific modeling of cardiovascular mechanics. Annu Rev Biomed Eng 11:109–134PubMedCrossRefGoogle Scholar
  39. 39.
    Tops LF, Wood DA, Delgado V, Schuijf JD, Mayo JR, Pasupati S, Lamers FPL, van der Wall EE, Schalij MJ, Webb JG, Bax JJ (2008) Noninvasive evaluation of the aortic root with multislice computed tomography implications for transcatheter aortic valve replacement. J Am Coll Cardiol Img 1:321–330Google Scholar
  40. 40.
    Walther T, Dehdashtian MM, Khanna R, Young E, Goldbrunner PJ, Lee W (2011) Trans-catheter valve-in-valve implantation: in vitro hydrodynamic performance of the sapien + cloth trans-catheter heart valve in the carpentier-edwards perimount valves. Eur J Cardiothorac Surg 40:1120–1126PubMedGoogle Scholar
  41. 41.
    Walther T, Falk V, Dewey T, Kempfert J, Emrich F, Pfannmueller B, Broeske P, Borger MA, Schuler G, Mack M, Mohr FW (2007) Valve-in-a-valve concept for transcatheter minimally invasive repeat xenograft implantation. J Am Coll Cardiol 50:56–60PubMedCrossRefGoogle Scholar
  42. 42.
    Wang Q, Book G, Contreras Ortiz S, Primiano C, McKay R, Kodali S, Sun W (2011) Dimensional analysis of aortic root geometry during diastole using 3d models reconstructed from clinical 64-slice computed tomography images. Cardiovasc Eng Technol 2:324–333Google Scholar
  43. 43.
    Webb J, Cribier A (2011) Percutaneous transarterial aortic valve implantation: what do we know? Eur Heart J 32:140–147PubMedCrossRefGoogle Scholar
  44. 44.
    Webb JG, Altwegg L, Boone RH, Cheung A, Ye J, Lichtenstein S, Lee M, Masson JB, Thompson C, Moss R, Carere R, Munt B, Nietlispach F, Humphries K (2009) Transcatheter aortic valve implantation impact on clinical and valve-related outcomes. Circulation 119:3009–3016PubMedCrossRefGoogle Scholar
  45. 45.
    Webb JG, Lichtenstein S (2007) Transcatheter percutaneous and transapical aortic valve replacement. Semin Thorac Cardiovasc Surg 19:304–310PubMedCrossRefGoogle Scholar
  46. 46.
    Webb JG, Wood DA, Ye J, Gurvitch R, Masson J-B, Rodes-Cabau J, Osten M, Horlick E, Wendler O, Dumont E, Carere RG, Wijesinghe N, Nietlispach F, Johnson M, Thompson CR, Moss R, Leipsic J, Munt B, Lichtenstein SV, Cheung A (2010) Transcatheter valve-in-valve implantation for failed bioprosthetic heart valves. Circulation 121:1848–1857PubMedCrossRefGoogle Scholar
  47. 47.
    Zioupos P, Barbenel JC, Fisher J (1994) Anisotropic elasticity and strength of glutaraldehyde fixed bovine pericardium for use in pericardial bioprosthetic valves. J Biomed Mater Res 28:49–57PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2012

Authors and Affiliations

  • C. Capelli
    • 1
  • G. M. Bosi
    • 1
    • 2
  • E. Cerri
    • 1
    • 2
  • J. Nordmeyer
    • 3
  • T. Odenwald
    • 1
  • P. Bonhoeffer
    • 1
  • F. Migliavacca
    • 2
  • A. M. Taylor
    • 1
  • S. Schievano
    • 1
  1. 1.Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular ScienceGreat Ormond Street Hospital for ChildrenLondonUK
  2. 2.Laboratory of Biological Structure Mechanics, Structural Engineering DepartmentPolitecnico di MilanoMilanItaly
  3. 3.Department of Congenital Heart Disease and Paediatric CardiologyDeutsches Herzzentrum BerlinBerlinGermany

Personalised recommendations