Medical & Biological Engineering & Computing

, Volume 50, Issue 2, pp 117–126 | Cite as

Sensor-based cell and tissue screening for personalized cancer chemotherapy

  • Regina Kleinhans
  • Martin BrischweinEmail author
  • Pei Wang
  • Bernhard Becker
  • Franz Demmel
  • Tobias Schwarzenberger
  • Marlies Zottmann
  • Peter Wolf
  • Axel Niendorf
  • Bernhard WolfEmail author
Original Article


Personalized tumor chemotherapy depends on reliable assay methods, either based on molecular “predictive biomarkers” or on a direct, functional ex vivo assessment of cellular chemosensitivity. As a member of the latter category, a novel high-content platform is described monitoring human mamma carcinoma explants in real time and label-free before, during and after an ex vivo modeled chemotherapy. Tissue explants are sliced with a vibratome and laid into the microreaction chambers of a 24-well sensor test plate. Within these ≈23 μl volume chambers, sensors for pH and dissolved oxygen record rates of cellular oxygen uptake and extracellular acidification. Robot-controlled fluid system and incubation are parts of the tissue culture maintenance system while an integrated microscope is used for process surveillance. Sliced surgical explants from breast cancerous tissue generate well-detectable ex vivo metabolic activity. Metabolic rates, in particular oxygen consumption rates have a tendency to decrease over time. Nonetheless, the impact of added drugs (doxorubicin, chloroacetaldehyde) is discriminable. Sensor-based platforms should be evaluated in explorative clinical studies for their suitability to support targeted systemic cancer therapy. Throughput is sufficient for testing various drugs in a range of concentrations while the information content obtained from multiparametric real-time analysis is superior to conventional endpoint assays.


Targeted therapy Sensor Cancer tissue Cell metabolism 


  1. 1.
    Abel U (1992) Chemotherapy of advanced epithelial cancer: a critical review. Biomed Pharmacother 46:439–452PubMedCrossRefGoogle Scholar
  2. 2.
    Brischwein M, Grundl D, Zhang X, Wolf B (2009) Finite-element modelling of microphysiometry on cellular specimen, World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany. In: Dössel O, Schlegel WC (eds) IFMBE proceedings, vol 25/VII, Springer, Heidelberg (ISBN 978-3-642-03472-5, S. 30-33)Google Scholar
  3. 3.
    Brischwein M, Motrescu ER, Otto AM, Cabala E, Grothe H, Wolf B (2003) Functional cellular assays with multiparametric silicon sensor chips. Lab Chip 3(4):234–240PubMedCrossRefGoogle Scholar
  4. 4.
    Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416PubMedGoogle Scholar
  5. 5.
    Demetrick DJ, Douglas J (2003) Targeting cancer treatment: the challenge of anatomical pathology to the analytical chemist. Analyst 128:995–997PubMedCrossRefGoogle Scholar
  6. 6.
    Desar IME, van Herpen CML, van Laarhoven HWM, Barentz JO, Oyen WJG, van der Graaf WTA (2009) Beyond recist: molecular and functional imaging techniques for evaluation of response to targeted therapy. Cancer Treat Rev 35:309–321PubMedCrossRefGoogle Scholar
  7. 7.
    Eklund S, Nygren R, Larsson R (1998) Microphysiometry: new technology for evaluation of anticancer drug activity in human tumor cells in vitro. Anti-Cancer Drugs 9:531–538CrossRefGoogle Scholar
  8. 8.
    Fang JS, Gillies RD, Gatenby RA (2008) Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol 18:330–337PubMedCrossRefGoogle Scholar
  9. 9.
    Fang Y, Sullivan R, Graham CH (2007) Confluence-dependent resistance to doxorubicin in human MDA-MB-231 breast carcinoma cells requires hypoxia-inducible factor-1 activity. Exp Cell Res 313:867–877PubMedCrossRefGoogle Scholar
  10. 10.
    Gatenby RA, Gillies RJ (2007) Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol 39:1358–1366PubMedCrossRefGoogle Scholar
  11. 11.
    Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects on the anthracycline antibiotics adriamycin and daunomycin. Biochem Pharmacol 57:727–741PubMedCrossRefGoogle Scholar
  12. 12.
    Hafner F (2000) Cytosensor microphysiometer: technology and recent applications. Biosens Bioelectron 15:149–158PubMedCrossRefGoogle Scholar
  13. 13.
    Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197:461–463PubMedCrossRefGoogle Scholar
  14. 14.
    Hehlgans S, Haase M, Cordes N (2007) Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta 1775:163–180PubMedGoogle Scholar
  15. 15.
    Henning T, Brischwein M, Baumann W, Ehret R, Freund I, Kammerer R, Lehmann M, Schwinde A, Wolf B (2001) Approach to a multiparametric sensor-chip based tumor chemosensitivity assay. Anti-Cancer Drugs 12:21–32PubMedCrossRefGoogle Scholar
  16. 16.
    Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707PubMedCrossRefGoogle Scholar
  17. 17.
    Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s achilles′ heel. Cancer Cell 13:472–482PubMedCrossRefGoogle Scholar
  18. 18.
    Mattern J, Volm M (1982) Clinical relevance of predictive tests for cancer chemotherapy. Cancer Treat Rev 9:267–298PubMedCrossRefGoogle Scholar
  19. 19.
    McAlphine JN, Eisenkop SM, Spirtos NM (2008) Tumor heterogeneity in ovarian cancer as demonstrated by in vitro chemoresistance assays. Gynecol Oncol 110:360–364CrossRefGoogle Scholar
  20. 20.
    Mestres P, Morguet A (2009) The bionas technology for anticancer drug screening. Expert Opin Drug Discov 4:785–797CrossRefGoogle Scholar
  21. 21.
    Mestres P, Morguet A, Schmidt W, Kob A, Thedinga E (2006) A new method to assess drug sensitivity on breast tumor acute slices preparation. Ann NY Acad Sci 1091:460–469PubMedCrossRefGoogle Scholar
  22. 22.
    Metzger R, Deglmann CJ, Hoerrlein S, Zapf S, Hilfrich J (2001) Towards in vitro prediction of an in vivo cytostatic response of human tumor cells with a fast chemosensitivity assay. Toxicology 166:97–108PubMedCrossRefGoogle Scholar
  23. 23.
    Nagourney RA (2006) Ex vivo programmed cell death and the prediction of response to chemotherapy. Curr Treat Options Oncol 7:103–110PubMedCrossRefGoogle Scholar
  24. 24.
    Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5:1597–1601PubMedCrossRefGoogle Scholar
  25. 25.
    Owicki JC, Parce JW (1992) Biosensors based on the energy metabolism of living cells: the physical chemistry and cell biology of extracellular acidification. Biosens Bioelectron 7:255–272PubMedCrossRefGoogle Scholar
  26. 26.
    Petersen L (2003) Wirkspiegel des ifosfamidmetaboliten chloracetaldehyd im verhältnis zu den thiolen cystein, glutathion und mesna im blut und in menschlichen tumorxenograften bei der nacktmaus. Inauguraldissertation, Universität LübeckGoogle Scholar
  27. 27.
    Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443PubMedCrossRefGoogle Scholar
  28. 28.
    Rustum YM, Slocum HK (1988) Predictive tests for cancer chemotherapy and the problem of tumor cell heterogeneity. Prog Clin Biol Res 276:119–137PubMedGoogle Scholar
  29. 29.
    Tomida A, Tsuruo T (1999) Drug resistance mediated by cellular stress response to the microenvironment of solid tumors. Anti-Cancer Drug Design 14:169–177PubMedGoogle Scholar
  30. 30.
    Vaira V, Fedele G, Pyne S, Fasoli E, Zadra G, Bailey D, Snyder E, Faversani A, Coggi G, Flavin R, Bosari S, Loda M (2010) Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. PNAS 107:8352–8356PubMedCrossRefGoogle Scholar
  31. 31.
    van Nijsten NW (2009) Hypothesis: using the warburg effect against cancer by reducing glucose and providing lactate. Med Hypthesis 73:48–51CrossRefGoogle Scholar
  32. 32.
    Wolf B, Brischwein M, Baumann W, Ehret R, Henning T, Lehmann M, Schwinde A (1998) Microsensor-aided measurements of cellular signalling and metabolism on tumor cells: the cell monitoring system (CMS®). Tumor Biol 19:374–383CrossRefGoogle Scholar
  33. 33.
    Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrwell J, Teich J, Chomicz S, Ferrick DA (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292:C125–C136PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2012

Authors and Affiliations

  • Regina Kleinhans
    • 1
  • Martin Brischwein
    • 1
    Email author
  • Pei Wang
    • 1
  • Bernhard Becker
    • 1
  • Franz Demmel
    • 1
  • Tobias Schwarzenberger
    • 1
  • Marlies Zottmann
    • 1
  • Peter Wolf
    • 1
    • 2
  • Axel Niendorf
    • 3
  • Bernhard Wolf
    • 1
    Email author
  1. 1.Heinz Nixdorf-Lehrstuhl für Medizinische ElektronikTechnische Universität MünchenMunichGermany
  2. 2.HP Medizintechnik GmbHOberschleißheimGermany
  3. 3.Pathologie Hamburg-WestHamburgGermany

Personalised recommendations