Advertisement

ROAD: domestic assistant and rehabilitation robot

  • Isela CarreraEmail author
  • Héctor A. Moreno
  • Roque Saltarén
  • Carlos Pérez
  • Lisandro Puglisi
  • Cecilia Garcia
Special Issue - Original Article

Abstract

This study introduces the concept design and analysis of a robotic system for the assistance and rehabilitation of disabled people. Based on the statistical data of the most common types of disabilities in Spain and other industrialized countries, the different tasks that the device must be able to perform have been determined. In this study, different robots for rehabilitation and assistance previously introduced have been reviewed. This survey is focused on those robots that assist with gait, balance and standing up. The structure of the ROAD robot presents various advantages over these robots, we discuss some of them. The performance of the proposed architecture is analyzed when it performs the sit to stand activity.

Keywords

Robotic rehabilitation Robotic assistant Sit to stand activity 

Notes

Acknowledgments

The authors would like to thank the Spanish Government CICYT Project Ref. DPI2009-08778 for the financial support and the Comunidad de Madrid for supporting the project ROBOCITY2030-II Ref. P2009/DPI-1559. Ms. Carrera would also like to thank CONACYT Mexico for their financial support. The authors would like to thank Dr. Javier Lopez and the Hospital Infanta Sofia for their collaboration in this study.

References

  1. 1.
    Aissaoui R, Dansereau J (1999) Biomechanical analysis and modelling of sit to stand task: a literature review. IEEE Int Conf Syst Man Cyber 1:141–146. doi: 10.1109/ICSMC.1999.814072 Google Scholar
  2. 2.
    Amirabdollahian F, Loureiro R, Driessen B, Harwin W (2001) Error correction movement for machine assisted stroke rehabilitation. Integr Assist Technol Inf Age 9:60–65Google Scholar
  3. 3.
    Bien Z, Kim DJ, Stefanov DH, Han JS, Park HS, Chang PH (2002) Development of a novel type rehabilitation robotic system KARES II. Universal access assistive technology, Trinity Hall, University of Cambridge, Cambridge, pp 201–212Google Scholar
  4. 4.
    Chugo D, Mastuoka W, Jia S, Takase K, Asama H (2007) Rehabilitation walker with standing assistance. In: Rehabilitation robotics, 2007. ICORR 2007. IEEE 10th international conference, pp 132–137. doi: 10.1109/ICORR.2007.4428418
  5. 5.
    Dehail P, Bestaven E, Muller F, Mallet A, Robert B, Bourdel-Marchasson I, Petit J (2007) Kinematic and electromyographic analysis of rising from a chair during a “sit-to-walk” task in elderly subjects: role of strength. Clin Biomech 22(10):1096–1103CrossRefGoogle Scholar
  6. 6.
    Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11):1940–50. doi: 10.1109/TBME.2007.901024 PubMedCrossRefGoogle Scholar
  7. 7.
    der Loos HFMV, Mahoney R, Ammi C (2004) Great expectations for rehabilitation mechatronics in the coming decade. Adv Rehabil Robot 306:427–433CrossRefGoogle Scholar
  8. 8.
    der Loos MV, Michalowski S, Leifer L (1986) Design of omnidirectional mobile robot as a manipulation aid for severely disabled. In: Foulds R (ed) Interactive robotics aid. World Rehabilitation Fund, New York, pp 61–63Google Scholar
  9. 9.
    der Loos MV, Reinkensmeyer DS (2008) Chapter 54: Health Care and Rehabilitation Robotics. In: Siciliano B, Khatib O (eds) Handbook of robotics, Springer-Verlag, Berlin, pp 1223–1251Google Scholar
  10. 10.
    der Loos HFMV, Wagner JJ, Smaby N, Chang K, Madrigal O, Leifer LJ, Khatib O (1999) Provar assistive robot system architecture. In: Proceedings of the ICRA’99: IEEE international conference on robotics automation, Vol 1–4, pp 741–746Google Scholar
  11. 11.
    Driessen BJF, Evers HG, van Woerden JA (2001) Manus—a wheelchair-mounted rehabilitation robo. Proc Inst Mech Eng H 215(H3):285–290PubMedGoogle Scholar
  12. 12.
    Emken J, Reinkensmeyer D (2005) Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Syst Rehabil Eng 13(1):33–39. doi: 10.1109/TNSRE.2004.843173 PubMedCrossRefGoogle Scholar
  13. 13.
    Encuesta sobre discapacidades, deficiencias y estado de salud, 1999. Instituto Nacional de Estadística. España (1999)Google Scholar
  14. 14.
    Encuesta de Discapacidad, autonomía personal y situaciones de dependencia, EDAD 2008. Instituto Nacional de Estadística. España (2008)Google Scholar
  15. 15.
    Gijbels D, Lamers I, Kerkhofs L, Alders G, Knippenberg E, Feys P (2011) The armeo spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. J Neuroeng Rehabil 8:5Google Scholar
  16. 16.
    Goddar Space Flight Center, N.: Goddards cable-compliant joint technology gets patients up and walking with SAM (2008) http://ipp.gsfc.nasa.gov/SS-SAM.html. Accessed 22 Apr 2009
  17. 17.
    Hillman M (2004) Rehabilitation robotics from past to present—a historical perspective. Adv Rehabil Robot 306:25–44CrossRefGoogle Scholar
  18. 18.
    Hillman M, Hagan K, Hagan S, Jepson J, Orpwood R (2002) Weston wheelchair mounted assistive robot—the design story. Robotica 20:125–132. doi: 10.1017/S0263574701003897 CrossRefGoogle Scholar
  19. 19.
    Inkster L, Eng J (2004) Postural control during a sit-to-stand task in individuals with mild parkinson’s disease. Exp Brain Res 154:33–38. doi: 10.1007/s00221-003-1629-8 PubMedCrossRefGoogle Scholar
  20. 20.
    Jezernik S, Pfister A, Frueh H, Colombo G, Morari M (1999) Robotic orthosis lokomat: its use in the rehabilitation of locomotion and in the development of the biology-based neural controller. In : Annual IFESS conference, Ljubljana, pp 301–303Google Scholar
  21. 21.
    KapHo S, JuJang L (2009) The development of two mobile gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 17(2):156–166CrossRefGoogle Scholar
  22. 22.
    Kouta M, Shinkoda K, Kanemura N (2006) Sit-to-walk versus sit-to-stand or gait initiation: biomechanical analysis of young men. J Phys Ther Sci 18(2):201–206CrossRefGoogle Scholar
  23. 23.
    Krebs H, Hogan N, Aisen M, Volpe B (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6(1):75–87. doi: 10.1109/86.662623 PubMedCrossRefGoogle Scholar
  24. 24.
    Krebs HI, Volpe BT, Aisen ML, Hening W, Adamovich S, Poizner H, Subrahmanyan K, Hogan N (2003) Robotic applications in neuromotor rehabilitation. Robotica 21:3–11CrossRefGoogle Scholar
  25. 25.
    Mahoney RM (2001) The raptor wheelchair robot system. Integr Assist Technol Inf Age 9:135–141Google Scholar
  26. 26.
    Menchon M, Morales R, Badesa FJ, Domnech LM, Garca Aracl. N, Sabater JM, Prez C, Fernndez E (2010) Pneumatic rehabilitation robot: modelling and control. In: Proceedings for the joint conference of ISR 2010 and ROBOTIK 2010, MunichGoogle Scholar
  27. 27.
    Morales R, Badesa FJ, Domenech LM, Garca-Aracil N, Sabater JM, Menchon M, Fernandez E (2010) Design and control of a rehabilitation robot driven by pneumatic swivel modules. In: 3rd IEEE RAS and EMBS internacional conference on biomedical robotics and biomechatronics, IEEE catalog number: CFP10BRB-DVD, TokyoGoogle Scholar
  28. 28.
    Nuzik S, Lamb R, VanSant A, Hirt S (1986) Sit-to-stand movement pattern—a kinematic study. Phys Ther 66(11):1708–1713PubMedGoogle Scholar
  29. 29.
    Riener R, Nef T, Colombo G (2005) Robot-aided neurorehabilitation of the upper extremities. Med Biol Eng Comput 43:2–10. doi: 10.1007/BF02345116 PubMedCrossRefGoogle Scholar
  30. 30.
    Roeschel O (1996) Linked darboux motions. Math Pannon 7(2):291–301Google Scholar
  31. 31.
    Shor PC, Lum PS, Burgar CG, der Loos HFMV, Majmundar M, Yap R (2001) The effect of robotic-aided therapy on upper extremity joint passive range of motion and pain. Integr Assist Technol Inf Age Age 9:79–83Google Scholar
  32. 32.
    Topping M (2001) Handy 1, a robotic aid to independence for severely disabled people. Integr Assist Technol Inf Age 9:142–147Google Scholar
  33. 33.
    Tsai LW (1999) Robot analysis: the mechanics of serial and parallel manipulators. Wiley, New YorkGoogle Scholar
  34. 34.
    Veg A, Popovic DB (2008) Walkaround: mobile balance support for therapy of walking. IEEE Trans Neural Syst Rehabil Eng 16(3):264–269. doi: 10.1109/TNSRE.2008.918424 PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2011

Authors and Affiliations

  • Isela Carrera
    • 1
    Email author
  • Héctor A. Moreno
    • 1
  • Roque Saltarén
    • 1
  • Carlos Pérez
    • 1
  • Lisandro Puglisi
    • 1
  • Cecilia Garcia
    • 1
  1. 1.Centro de Automática y RobóticaUPM-CSICMadridSpain

Personalised recommendations