Advertisement

Medical & Biological Engineering & Computing

, Volume 49, Issue 9, pp 1083–1088 | Cite as

Quantitative calculation of human melatonin suppression induced by inappropriate light at night

  • Yang Meng
  • Zhenni He
  • Jian Yin
  • Yu Zhang
  • Tianhao Zhang
Original Article

Abstract

Melatonin (C13H16N2O2) has a wide range of functions in the body. When is inappropriately exposed to light at night, human circadian rhythm will be interfered and then melatonin secretion will become abnormal. For nearly three decades great progresses have been achieved in analytic action spectra and melatonin suppression by various light conditions. However, so far few articles focused on the quantitative calculation of melatonin suppression induced by light. In this article, an algorithm is established, in which all the contributions of rods, cones, and intrinsically photosensitive retinal ganglion cells are considered. Calculation results accords with the experimental data in references very well, which indicate the validity of this algorithm. This algorithm can also interpret the rule of melatonin suppression varying with light correlated color temperature very well.

Keywords

Light Melatonin suppression Algorithm IpRGC Rods Cones 

Notes

Acknowledgments

We are grateful for the technical assistance from Associate Prof. X.X. Xu, the Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, China; logistical and editorial assistance from Prof. C.P. Zhang and Vice President Prof. C.Y. Li, School of Physics, Nankai University, China.

References

  1. 1.
    Armstrong SM, Redman JR (1991) Melatonin: a chronobiotic with anti-aging properties? Med Hypotheses 34(4):300–309PubMedCrossRefGoogle Scholar
  2. 2.
    Beaudot WHA (1996) Adaptive spatiotemporal filtering by a neuromorphic model of the vertebrate retina. In: IEEE international conference on image processing, pp 427–430Google Scholar
  3. 3.
    Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460(3):380–393PubMedCrossRefGoogle Scholar
  4. 4.
    Berson DM (2007) Phototransduction in ganglion-cell photoreceptors. Pflugers Arch 454(5):849–855PubMedCrossRefGoogle Scholar
  5. 5.
    Cajochen C, Munch M, Kobialka S, Krauchi K, Steiner R, Oelhafen P (2005) High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab 90(3):1311–1316PubMedCrossRefGoogle Scholar
  6. 6.
    Dacey DM (2000) Parallel pathways for spectral coding in primate retina. Annu Rev Neurosci 23:743–775PubMedCrossRefGoogle Scholar
  7. 7.
    Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433(7027):749–754PubMedCrossRefGoogle Scholar
  8. 8.
    Dawson D, Armstrong SM (1996) Chronobiotics—drugs that shift rhythms. Pharmacol Ther 69(1):15–36PubMedCrossRefGoogle Scholar
  9. 9.
    Dowling JE (1987) The retina: an approachable part of the brain. The Belknap Press of Harvard University Press, Cambridge, pp 42–80Google Scholar
  10. 10.
    Doyle SE, Castrucci AM, McCall M, Provencio I, Menaker M (2006) Nonvisual light responses in the Rpe65 knockout mouse: rod loss restores sensitivity to the melanopsin system. Proc Natl Acad Sci USA 103(27):10432–10437PubMedCrossRefGoogle Scholar
  11. 11.
    Dumitrescu ON, Pucci FG, Wong KY, Berson DM (2009) Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol 517(2):226–244PubMedCrossRefGoogle Scholar
  12. 12.
    Famiglietti EV, Kolb H (1975) A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Res 84(2):293–300PubMedCrossRefGoogle Scholar
  13. 13.
    Figueiro MG, Rea MS, Bullough JD (2006) Circadian effectiveness of two polychromatic lights in suppressing human nocturnal melatonin. Neurosci Lett 406(3):293–297PubMedCrossRefGoogle Scholar
  14. 14.
    Güler AD, Altimus CM, Ecker JL, Hattar S (2007) Multiple photoreceptors contribute to nonimage-forming visual functions predominantly through melanopsin-containing retinal ganglion cells. Cold Spring Harb Symp Quant Biol 72:509–515PubMedCrossRefGoogle Scholar
  15. 15.
    Hampson EC, Vaney DI, Weiler R (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci 12(12):4911–4922PubMedGoogle Scholar
  16. 16.
    Hardeland R, Reiter RJ, Poeggeler B, Tan DX (1993) The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev 17(3):347–357PubMedCrossRefGoogle Scholar
  17. 17.
    Hokoc JN, Mariani AP (1987) Tyrosine hydroxylase immunoreactivity in the rhesus monkey retina reveals synapses from bipolar cells to dopaminergic amacrine cells. J Neurosci 7(9):2785–2793PubMedGoogle Scholar
  18. 18.
    Jusuf PR, Lee SC, Hannibal J, Grünert U (2007) Characterization and synaptic connectivity of melanopsin-containing ganglion cells in the primate retina. Eur J Neurosci 26(10):2906–2921PubMedCrossRefGoogle Scholar
  19. 19.
    Kawasaki A, Kardon RH (2007) Intrinsically photosensitive retinal ganglion cells. J Neuroophthalmol 27(3):195–204PubMedGoogle Scholar
  20. 20.
    Kolb H (1970) Organization of the outer plexiform layer of the primate retina: electron microscopy of golgi-impregnated cells. Phil Trans R Soc B 258(823):261–283CrossRefGoogle Scholar
  21. 21.
    Kouyama N, Marshak DW (1992) Bipolar cells specific for blue cones in the macaque retina. J Neurosci 12(4):1233–1252PubMedGoogle Scholar
  22. 22.
    Kozaki T, Koga S, Toda N (2008) Effects of short wavelength control in polychromatic light sources on nocturnal melatonin secretion. Neurosci Lett 439(3):256–259PubMedCrossRefGoogle Scholar
  23. 23.
    Lewy AJ, Wehr TA, Goodwin FA, Newsome DA, Markey SP (1980) Light suppresses melatonin secretion in humans. Science 210(4475):1267–1269PubMedCrossRefGoogle Scholar
  24. 24.
    Lockley SW, Brainard GC, Czeisler CA (2003) High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 88(9):4502–4505PubMedCrossRefGoogle Scholar
  25. 25.
    Lockley SW, Evans EE, Scheer FA, Brainard GC, Czeisler CA, Aeschbach D (2006) Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep 29(2):161–168PubMedGoogle Scholar
  26. 26.
    Maestroni GJ (2001) The immunotherapeutic potential of melatonin. Expert Opin Investig Drugs 10(3):467–476PubMedCrossRefGoogle Scholar
  27. 27.
    Mariani AP (1984) Bipolar cells in monkey retina selective for cones likely to be blue-sensitive. Nature 30(5955):184–186CrossRefGoogle Scholar
  28. 28.
    Miller SC, Pandi-Perumal SR, Esquifino AI, Cardinali DP, Maestroni GJM (2006) The role of melatonin in immunoenhancement: potential application in cancer. Int J Exp Pathol 87(2):81–87PubMedCrossRefGoogle Scholar
  29. 29.
    Morita T, Tokura H (1996) Effects of lights of different color temperature on the nocturnal changes in core temperature and melatonin in humans. Appl Hum Sci 15(5):243–246CrossRefGoogle Scholar
  30. 30.
    Nayak SK, Jegla T, Panda S (2007) Role of a novel photopigment, melanopsin, in behavioral adaptation to light. Cell Mol Life Sci 64(2):144–154PubMedCrossRefGoogle Scholar
  31. 31.
    Nelson R (1982) AII amacrine cells quicken the time course of rod signals in the cat retina. J Neurophysiol 47(5):928–947PubMedGoogle Scholar
  32. 32.
    Østergaard J, Hannibal J, Fahrenkrug J (2007) Synaptic contact between melanopsin-containing retinal ganglion cells and rod bipolar cells. Invest Ophthalmol Vis Sci 48(8):3812–3820PubMedCrossRefGoogle Scholar
  33. 33.
    Perez-Leon JA, Warren EJ, Allen CN, Robinson DW, Lane Brown R (2006) Synaptic inputs to retinal ganglion cells that set the circadian clock. Eur J Neurosci 24(4):1117–1123PubMedCrossRefGoogle Scholar
  34. 34.
    Poeggeler B, Saarela S, Reiter RJ et al (1994) Melatonin a highly potent endogenous radical scavenger and electron donor: new aspects of the oxidation chemistry of this indole accessed in vitro. Ann N Y Acad Sci 738:419–420PubMedCrossRefGoogle Scholar
  35. 35.
    Rea MS, Bullough JD, Figueiro MG (2001) Human melatonin suppression by light: a case for scotopic efficiency. Neurosci Lett 299(1–2):45–48PubMedCrossRefGoogle Scholar
  36. 36.
    Rea MS, Figueiro MG, Bullough JD, Bierman A (2005) A model of phototransduction by the human circadian system. Brain Res Rev 50(2):213–228PubMedCrossRefGoogle Scholar
  37. 37.
    Revell VL, Skene DJ (2007) Light-induced melatonin suppression in humans with polychromatic and monochromatic light. Chronobiol Int 24(6):1125–1137PubMedCrossRefGoogle Scholar
  38. 38.
    Revell VL, Arendt J, Terman M, Skene DJ (2006) Short-wavelength sensitivity of the human circadian system to phase-advancing light. J Biol Rhythms 20(3):270–272CrossRefGoogle Scholar
  39. 39.
    Roorda A, Williams DR (1997) The arrangement of the three cone classes in the living human eye. Nature 397(6719):520–522CrossRefGoogle Scholar
  40. 40.
    Sato M, Sakaguchi T, Morita T (2005) The effects of exposure in the morning to light of different color temperatures on the behavior of core temperature and melatonin secretion in humans. Biol Rhythm Res 36(4):287–292CrossRefGoogle Scholar
  41. 41.
    Srinivasan V, Spence DW, Pandi-Perumal SR, Trakht I, Esquifino AI, Cardinali DP, Maestroni GJ (2008) Melatonin, environmental light, and breast cancer. Breast Cancer Res Treat 108(3):339–350PubMedCrossRefGoogle Scholar
  42. 42.
    Stevens RG, Blask DE, Brainard GC (2007) Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases. Environ Health Perspect 115(9):1357–1362PubMedCrossRefGoogle Scholar
  43. 43.
    Strettoi E, Raviola E, Dacheux RF (1992) Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina. J Comp Neurol 325(2):152–168PubMedCrossRefGoogle Scholar
  44. 44.
    Vaney DI (1994) Patterns of neuronal coupling in the retina. Prog Ret Eye Res 13:301–355CrossRefGoogle Scholar
  45. 45.
    Wong KY, Dunn FA, Graham DM, Berson DM (2007) Synaptic influences on rat ganglion-cell photoreceptors. J Physiol 582(Pt 1):279–296PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2011

Authors and Affiliations

  • Yang Meng
    • 1
  • Zhenni He
    • 3
  • Jian Yin
    • 2
  • Yu Zhang
    • 1
  • Tianhao Zhang
    • 1
  1. 1.Photonics Research Center, School of PhysicsNankai UniversityTianjinChina
  2. 2.Department of Breast, Cancer HospitalTianjin Medical UniversityTianjinChina
  3. 3.Physics Experiment CenterRenai Collage of Tianjin UniversityTianjinChina

Personalised recommendations