Medical & Biological Engineering & Computing

, Volume 49, Issue 6, pp 713–718

Synergistic effects of local temperature enhancements on cellular responses in the context of high-intensity, ultrashort electric pulses

Technical Note

Abstract

Results of self-consistent analyses of cells show the possibility of temperature increases at membranes in response to a single nanosecond, high-voltage pulse, at least over small sections of the membrane. Molecular Dynamics simulations indicate that such a temperature increase could facilitate poration, which is one example of a bio-process at the plasma membrane. Our study thus suggests that the use of repetitive high-intensity voltage pulses could open up possibilities for a host of synergistic bio-responses involving both thermal and electrically driven phenomena.

Keywords

Bioelectric Voltage pulse Nanosecond, high intensity Modeling Thermal effect 

References

  1. 1.
    Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I (2006) Bistability in apoptosis: roles of Bax, Bcl-2, and mitochondrial permeability transition pores. Biophys J 90:1546–1559PubMedCrossRefGoogle Scholar
  2. 2.
    Beebe SJ, Blackmore PF, White J, Joshi RP, Schoenbach KH (2004) Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms. Physiol Meas 25:1077–1093PubMedCrossRefGoogle Scholar
  3. 3.
    Berendsen HJC, van der Spoel D, van Drumen R (1995) Gromacs: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56CrossRefGoogle Scholar
  4. 4.
    Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44:5–14PubMedCrossRefGoogle Scholar
  5. 5.
    Corovic S, Zupanic A, Kranjc S, Al Sakere B, Leroy-Willig A, Mir LM, Miklavcic D (2010) The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling. Med Biol Eng Comput 48:637–648PubMedCrossRefGoogle Scholar
  6. 6.
    Croce RP, De Vita A, Pierro V, Pinto IM (2010) A thermal model for pulsed EM field exposure effects in cells at nonthermal levels. IEEE Trans Plasma Sci 38:149–155CrossRefGoogle Scholar
  7. 7.
    Davio SR, Low PS (1982) Characterization of the calorimetric C-transition of the human erythrocyte membrane. Biochemistry 21:3575–3582CrossRefGoogle Scholar
  8. 8.
    Hojman P, Zibert J, Gissel H, Eriksen J, Gehl J (2007) Gene expression profiles in skeletal muscle after gene electrotransfer. BMC Mol Biol 8:56PubMedCrossRefGoogle Scholar
  9. 9.
    Ivanov IT (1999) Investigation of surface and shape changes accompanying the membrane alteration responsible for the heat-induced lysis of human erythrocytes. Colloids Surfaces B 13:311–323CrossRefGoogle Scholar
  10. 10.
    Joshi RP, Schoenbach KH (2010) Bioelectric effects of intense, ultrashort electric pulses. Crit Rev Bio-Med Eng 38:255–304Google Scholar
  11. 11.
    Joshi RP, Hu Q, Schoenbach KH, Beebe SJ (2005) Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E 71:031914/1–9Google Scholar
  12. 12.
    Joshi RP, Mishra A, Song J, Pakhomov AP, Schoenbach KH (2008) Simulation studies of ultrashort, high-intensity electric pulse induced action potential block in whole-animal nerves. IEEE Trans Biomed Eng 55:1391–1398PubMedCrossRefGoogle Scholar
  13. 13.
    Kotnik T, Miklavcic D (2006) Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric field. Biophys J 90:480–491PubMedCrossRefGoogle Scholar
  14. 14.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri S, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489PubMedCrossRefGoogle Scholar
  15. 15.
    Lindahl E, Hess B, van der Spoel D (2001) A package for molecular simulation and trajectory analysis. J Mol Model 7:306–317Google Scholar
  16. 16.
    Marzo I, Brenner C, Zamzami N, Jürgensmeier JM, Susin SA, Vieira HLA, Prévost MC, Xie Z, Matsuyama S, Reed JC, Kroemer G (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031PubMedCrossRefGoogle Scholar
  17. 17.
    Mir LM, Orlowski S, Belehradek J Jr, Teissie J, Rols MP, Sersa G, Miklavcic D, Gilbert R, Heller R (1995) Biomedical applications of electric pulses with special emphasis on antitumor electrochemotherapy. Bioelectrochem Bioenerg 38:203–207CrossRefGoogle Scholar
  18. 18.
    Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95:14681–14686PubMedCrossRefGoogle Scholar
  19. 19.
    Neu JC, Krassowska W (2006) Singular perturbation analysis of the pore creation transient. Phys Rev E 74:031917/1–9Google Scholar
  20. 20.
    Neumann E, Sowers AE, Jordan CA (1989) Electroporation and electrofusion in cell biology. Plenum Press, New York, NYGoogle Scholar
  21. 21.
    Neumann E, Kakorin S, Toensig K (1999) The effect of resting transmembrane voltage on cell electropermeabilization: a numerical analysis. Bioelectrochem Bioenerg 48:3–16PubMedCrossRefGoogle Scholar
  22. 22.
    Nijhuis EHA, Poot AA, Feijen J, Vermes I (2006) Induction of apoptosis by heat and γ-radiation in a human lymphoid cell line; role of mitochondrial changes and caspase activation. Int J Hyperth 22:687–698CrossRefGoogle Scholar
  23. 23.
    Nuccitelli R, Pliquett U, Chen X, Ford W, Swanson RJ, Beebe SJ, Kolb JF, Schoenbach KH (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343:351–360PubMedCrossRefGoogle Scholar
  24. 24.
    Nuccitelli R, Chen X, Pakhomov AG, Baldwin WH, Sheikh S, Pomicter JL, Ren W, Osgood C, Swanson RJ, Kolb JF, Beebe SJ, Schoenbach KH (2009) A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer 125:438–445PubMedCrossRefGoogle Scholar
  25. 25.
    Peter ME, Krammer PH (2003) The CD95 DISC and beyond. Cell Death Differ 10:26–35PubMedCrossRefGoogle Scholar
  26. 26.
    Pliquett U (2003) Joule heating during solid tissue electroporation. Med Biol Eng Comput 41:215–219PubMedCrossRefGoogle Scholar
  27. 27.
    Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448PubMedCrossRefGoogle Scholar
  28. 28.
    Schoenbach KH, Joshi RP, Kolb J, Chen N, Stacey M, Blackmore P, Buescher ES, Beebe SJ (2004) Ultrashort electrical pulses open a new gateway into biological cells. Proc IEEE 92:1122–1137CrossRefGoogle Scholar
  29. 29.
    Schoenbach KH, Hargrave B, Joshi RP, Kolb JF, Nuccitelli R, Osgood C, Pakhomov AP, Stacey M, Swanson RJ, White J, Xiao S, Zhang J, Beebe SJ, Blackmore PF, Buescher ES (2007) Bioelectric effects of intense nanosecond pulses. IEEE Trans Dielectr Electr Insul 14:1088–1119CrossRefGoogle Scholar
  30. 30.
    Swillens S, Dupont G, Combettes L, Champeil P (1999) From calcium blips to calcium puffs: theoretical analysis of the requirements for interchannel communication. Proc Natl Acad Sci 96:13750–13755PubMedCrossRefGoogle Scholar
  31. 31.
    Teissie J, Eynard N, Gabriel B, Rols MP (1999) Electropermeabilization of cell membranes. Adv Drug Deliv Rev 35:3–19PubMedCrossRefGoogle Scholar
  32. 32.
    Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA (2003) Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun 310:286–295PubMedCrossRefGoogle Scholar
  33. 33.
    Weaver JC, Chizmadzhev Y (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160CrossRefGoogle Scholar
  34. 34.
    Winterhalter M, Helfrich W (1987) Effect of voltage on pores in membranes. Phys Rev A 36:5874–5876PubMedCrossRefGoogle Scholar
  35. 35.
    Xiao S, Altunc S, Kumar P, Baum CE, Schoenbach KH (2010) A reflector antenna for focusing subnanosecond pulses in the near field. IEEE Trans Antenna Wirel Propag Lett 9:12–15CrossRefGoogle Scholar
  36. 36.
    Zhang J, Blackmore PF, Hargrave BY, Xiao S, Beebe JS, Schoenbach KH (2008) Nanosecond pulse electric field (nanopulse): a novel non-ligand agonist for platelet activation. Arch Biochem Biophys 471:240–248PubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2011

Authors and Affiliations

  1. 1.Department of Electrical and Computer Engineering and Frank Reidy Center for Bio-ElectricsOld Dominion UniversityNorfolkUSA

Personalised recommendations