Medical & Biological Engineering & Computing

, Volume 49, Issue 2, pp 163–170 | Cite as

A hybrid approach for the control of axonal outgrowth: preliminary simulation results

  • Gianni Ciofani
  • Pier Nicola Sergi
  • Jacopo Carpaneto
  • Silvestro Micera
Original Article


The possible control of axonal outgrowth during neural regeneration could be very useful not only from a neurobiological point of view, but also in the field of neural interfaces. In this manuscript, simulations are presented which investigate the possibility of guiding axons by using a hybrid approach based on the combined used of a chemical model and of a genetic algorithm. Microspheres embedding chemical cues on the basis of information provided by a genetic algorithm are placed to impose a desired trajectory on the axons. Two kinds of simulations were carried out: (i) tracking of linear trajectories; (ii) tracking of trajectories, which were reconstructed from real axonal extension. The results achieved during the simulations seem to confirm the possible use of this approach to guide axonal outgrowth, being the obtained trajectories congruent to possible actual situations. Moreover, the model can be easily extended to a three-dimensional environment.


Peripheral nervous system Sieve electrodes Regeneration Genetic algorithms Neuro-robotics Bionics Bio-robotics 


  1. 1.
    Cao X, Schoichet MS (1999) Delivering neuroactive molecules from biodegradable microspheres for application in central nervous system disorders. Biomaterials 20:329–339CrossRefPubMedGoogle Scholar
  2. 2.
    Chan L, Lee H, Heng P (2002) Production of alginate microspheres by internal gelation using an emulsification method. Int J Pharm 242:259–262CrossRefPubMedGoogle Scholar
  3. 3.
    Chang X, Lilly JH (2004) Evolutionary design of a fuzzy classifier from data. IEEE Trans Syst Man Cybern B Cybern 34:1894–1906CrossRefPubMedGoogle Scholar
  4. 4.
    Ciofani G, Raffa V, Menciassi A, Micera S, Dario P (2007) A drug delivery system based on alginate microspheres: mass-transport test and in vitro validation. Biomed Microdevices 9:395–403CrossRefPubMedGoogle Scholar
  5. 5.
    Ciofani G, Raffa V, Menciassi A, Cuschieri A, Micera S (2009) Magnetic alginate microspheres: system for the position controlled delivery of nerve growth factor. Biomed Microdevices 11:517–527CrossRefPubMedGoogle Scholar
  6. 6.
    Dario P, Garzella P, Toro M, Micera S, Alavi M, Meyer U, Valderrama E, Sebastiani L, Ghelarducci B, Mazzoni C, Pastacaldi P (1998) Neural interfaces for regenerated nerve stimulation and recording. IEEE Trans Rehabil Eng 6:353–363CrossRefPubMedGoogle Scholar
  7. 7.
    Deb K, Anand A, Joshi D (2002) A computationally efficient evolutionary algorithm for real-parameter optimization. Evol Comput 10:371–395CrossRefPubMedGoogle Scholar
  8. 8.
    Dhillon GS, Horch KW (2005) Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng 13:468–472CrossRefPubMedGoogle Scholar
  9. 9.
    Edell DJ (1986) A peripheral nerve information transducer for amputees: long-term multichannel recordings from rabbit peripheral nerves. IEEE Trans Biomed Eng 33:203–214CrossRefPubMedGoogle Scholar
  10. 10.
    Faix J, Rottner K (2006) The making of filopodia. Curr Opin Cell Biol 18:18–25CrossRefPubMedGoogle Scholar
  11. 11.
    Goodhill GJ (1997) Diffusion in axon guidance. Eur J Neurosci 9:1414–1421CrossRefPubMedGoogle Scholar
  12. 12.
    Goodhill GJ (1998) Mathematical guidance for axons. Trends Neurosci 21:226–231CrossRefPubMedGoogle Scholar
  13. 13.
    Goodhill GJ, Gu M, Urbach JS (2004) Predicting axonal response to molecular gradients with a computational model of filopodial dynamics. Neural Comput 16:2221–2243CrossRefPubMedGoogle Scholar
  14. 14.
    Grill WM, Norman SE, Bellamkonda RV (2009) Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng 11:1–24CrossRefPubMedGoogle Scholar
  15. 15.
    Höke A, Redett R, Hameed H, Jari R, Zhou C, Li ZB, Griffin JW, Brushart TM (2006) Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci 26:9646–9655CrossRefPubMedGoogle Scholar
  16. 16.
    Holland JH (1975) Adaptation in natural and artificial systems. MIT Press, CambridgeGoogle Scholar
  17. 17.
    Hudson TW, Evans GR, Schmidt CE (1999) Engineering strategies for peripheral nerve repair. Clin Plast Surg 26:617–628PubMedGoogle Scholar
  18. 18.
    Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments—a survey. IEEE Trans Evol Comput 9:303–317CrossRefGoogle Scholar
  19. 19.
    Krottje JK, van Ooyen A (2007) A mathematical framework for modeling axon guidance. Bull Math Biol 69:3–31CrossRefPubMedGoogle Scholar
  20. 20.
    Lago N, Ceballos D, Rodríguez FJ, Stieglitz T, Navarro X (2005) Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials 26:2021–2031CrossRefPubMedGoogle Scholar
  21. 21.
    Li GH, Qin CD (1996) A model for neurite growth and neuronal morphogenesis. Math Biosci 132:97–110CrossRefPubMedGoogle Scholar
  22. 22.
    Maskery S, Shinbrot T (2005) Deterministic and stochastic elements of axonal guidance. Annu Rev Biomed Eng 7:187–221CrossRefPubMedGoogle Scholar
  23. 23.
    Maysinger D, Krieglstein K, Filipovic-Grcic J, Sendtner M, Unsicker K, Richardson P (1996) Microencapsulated ciliary neurotrophic factor: physical properties and biological activities. Exp Neurol 138:177–188CrossRefPubMedGoogle Scholar
  24. 24.
    Mezura-Montes E, Coello CAC (2005) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans Evol Comput 9:1–17CrossRefGoogle Scholar
  25. 25.
    Micera S, Citi L, Rigosa J, Carpaneto J, Raspopovic S, Dipino G, Rossini L, Yoshida K, Rossini PM (2010) Decoding sensory and motor information from neural signals recorded using intraneural electrodes: towards the development of a neurocontrolled hand prosthesis. Proc IEEE 98:407–417CrossRefGoogle Scholar
  26. 26.
    Micera S, Navarro X (2009) Bidirectional interfaces with the peripheral nervous system. Int Rev Neurobiol 86:23–38CrossRefPubMedGoogle Scholar
  27. 27.
    Micera S, Carrozza M, Vecchi F, Beccai L, Dario P (2006) Hybrid bionic systems for the replacement of hand function. Proc IEEE 94:1752–1762CrossRefGoogle Scholar
  28. 28.
    Michalewicz Z (1994) Genetic algorithms + data structures = evolution programs. Springer-Verlag New York, Inc., New York, NY, USAGoogle Scholar
  29. 29.
    Millesi H, Ganglberger J, Berger A (1967) Erfharungen mit der Mikrochirurgie peripherer. Nerven Chir Plast 3:47Google Scholar
  30. 30.
    Ming G, Henley J, Tessier-Lavigne M, Song H, Poo M (2001) Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29:441–452CrossRefPubMedGoogle Scholar
  31. 31.
    Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10:229–258CrossRefPubMedGoogle Scholar
  32. 32.
    Ramachandran A, Schuettler M, Lago N, Doerge T, Koch KP, Navarro X, Hoffmann KP, Stieglitz T (2006) Design, in vitro and in vivo assessment of a multi-channel sieve electrode with integrated multiplexer. J Neural Eng 3:114–124CrossRefPubMedGoogle Scholar
  33. 33.
    Riso RR (1999) Strategies for providing upper extremity amputees with tactile and hand position feedback—moving closer to the bionic arm. Technol Health Care 7:401–409PubMedGoogle Scholar
  34. 34.
    Rudolph G (1994) Convergence analysis of canonical genetic algorithms. IEEE Trans Neural Netw 5:96–101CrossRefPubMedGoogle Scholar
  35. 35.
    Segev R, Ben-Jacob E (2000) Generic modeling of chemotactic based self-wiring of neural networks. Neural Netw 13:185–199CrossRefPubMedGoogle Scholar
  36. 36.
    Yu TW, Bargmann CI (2001) Dynamic regulation of axon guidance. Nat Neurosci 4:1169–1176CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2010

Authors and Affiliations

  • Gianni Ciofani
    • 1
  • Pier Nicola Sergi
    • 1
  • Jacopo Carpaneto
    • 1
  • Silvestro Micera
    • 1
  1. 1.ARTS, CRIM and IIT LabsScuola Superiore Sant’AnnaPisaItaly

Personalised recommendations