Advertisement

Medical & Biological Engineering & Computing

, Volume 48, Issue 11, pp 1123–1131 | Cite as

Real-time estimation of cerebrospinal fluid system parameters via oscillating pressure infusion

  • Kennet AnderssonEmail author
  • Ian R. Manchester
  • Jan Malm
  • Anders Eklund
Original Article

Abstract

Hydrocephalus is related to a disturbed cerebrospinal fluid (CSF) system. For diagnosis, lumbar infusion test are performed to estimate outflow conductance, C out, and pressure volume index, PVI, of the CSF system. Infusion patterns and analysis methods used in current clinical practice are not optimized. Minimizing the investigation time with sufficient accuracy is of major clinical relevance. The aim of this study was to propose and experimentally evaluate a new method, the oscillating pressure infusion (OPI). The non-linear model of the CSF system was transformed into a linear time invariant system. Using an oscillating pressure pattern and linear system identification methods, C out and PVI with confidence intervals, were estimated in real-time. Forty-two OPI and constant pressure infusion (CPI) investigations were performed on an experimental CSF system, designed with PVI = 25.5 ml and variable C out. The ARX model robustly estimated C out (mean C out,OPI − C out,CPI = 0.08 μl/(s kPa), n = 42, P = 0.68). The Box–Jenkins model proved most reliable for PVI (23.7 ± 2.0 ml, n = 42). The OPI method, with its oscillating pressure pattern and new parameter estimation methods, efficiently estimated C out and PVI as well as their confidence intervals in real-time. The results from this experimental study show potential for the OPI method and supports further evaluation in a clinical setting.

Keywords

Normal pressure hydrocephalus System identification Outflow resistance Outflow conductance Intracranial pressure Infusion test 

Notes

Acknowledgments

This project was funded by the Swedish research council, Vinnova, and the Foundation for Strategic Research through their joint initiative Biomedical Engineering for Better Health, and the Objective 2 Norra Norrland—EU Structural Fund.

Supplementary material

11517_2010_670_MOESM1_ESM.doc (80 kb)
Supplementary material 1 (DOC 79 kb)
11517_2010_670_MOESM2_ESM.eps (2.2 mb)
Supplementary material 2 (EPS 2272 kb)
11517_2010_670_MOESM3_ESM.doc (66 kb)
Supplementary material 3 (DOC 66 kb)

References

  1. 1.
    Andersson K, Manchester IR, Andersson N, Shiriaev AS, Malm J, Eklund A (2007) Assessment of cerebrospinal fluid outflow conductance using an adaptive observer—experimental and clinical evaluation. Physiol Meas 28:1355–1368CrossRefPubMedGoogle Scholar
  2. 2.
    Andersson N, Malm J, Backlund T, Eklund A (2005) Assessment of cerebrospinal fluid outflow conductance using constant-pressure infusion—a method with real time estimation of reliability. Physiol Meas 26:1137–1148CrossRefPubMedGoogle Scholar
  3. 3.
    Andersson N, Malm J, Eklund A (2008) Dependency of cerebrospinal fluid outflow resistance on intracranial pressure. J Neurosurg 109:918–922CrossRefPubMedGoogle Scholar
  4. 4.
    Andersson N, Malm J, Wiklund U, Eklund A (2007) Adaptive method for assessment of cerebrospinal fluid outflow conductance. Med Biol Eng Comput 45:337–343CrossRefPubMedGoogle Scholar
  5. 5.
    Avezaat CJ, van Eijndhoven JH, Wyper DJ (1979) Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships. J Neurol Neurosurg Psychiatry 42:687–700CrossRefPubMedGoogle Scholar
  6. 6.
    Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HA, Avezaat CJ, de Jong DA, Gooskens RH, Hermans J (1997) Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J Neurosurg 87:687–693CrossRefPubMedGoogle Scholar
  7. 7.
    Borgesen SE (1984) Conductance to outflow of CSF in normal pressure hydrocephalus. Acta Neurochir (Wien) 71:1–45CrossRefGoogle Scholar
  8. 8.
    Borgesen SE, Albeck MJ, Gjerris F, Czosnyka M, Laniewski P (1992) Computerized infusion test compared to steady pressure constant infusion test in measurement of resistance to CSF outflow. Acta Neurochir (Wien) 119:12–16CrossRefGoogle Scholar
  9. 9.
    Brinker T, Beck H, Klinge P, Kischnik B, Oi S, Samii M (1998) Sinusoidal intrathecal infusion for assessment of CSF dynamics in kaolin-induced hydrocephalus. Acta Neurochir (Wien) 140:1069–1075CrossRefGoogle Scholar
  10. 10.
    Charlton JD, Johnson RN, Pederson NE, Mann JD (1983) Assessment of cerebrospinal fluid compliance and outflow resistance: analysis of steady-state response to sinusoidal input. Ann Biomed Eng 11:551–561CrossRefPubMedGoogle Scholar
  11. 11.
    Cieslicki K, Czepko R (2010) Can infusion tests be recommended for patients with giant hydrocephalus? Neurol India 58:78–84CrossRefPubMedGoogle Scholar
  12. 12.
    Czosnyka M, Batorski L, Laniewski P, Maksymowicz W, Koszewski W, Zaworski W (1990) A computer system for the identification of the cerebrospinal compensatory model. Acta Neurochir (Wien) 105:112–116CrossRefGoogle Scholar
  13. 13.
    Delwel EJ, de Jong DA, Avezaat CJ (2005) The prognostic value of clinical characteristics and parameters of cerebrospinal fluid hydrodynamics in shunting for idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 147:1037–1042 discussion 1042-3CrossRefGoogle Scholar
  14. 14.
    Eklund A, Agren-Wilsson A, Andersson N, Bergenheim AT, Koskinen LO, Malm J (2001) Two computerized methods used to analyze intracranial pressure B waves: comparison with traditional visual interpretation. J Neurosurg 94:392–396CrossRefPubMedGoogle Scholar
  15. 15.
    Eklund A, Smielewski P, Chambers I, Alperin N, Malm J, Czosnyka M, Marmarou A (2007) Assessment of cerebrospinal fluid outflow resistance. Med Biol Eng Comput 45:719–735CrossRefPubMedGoogle Scholar
  16. 16.
    Glad T, Ljung L (2000) Control theory: multivariable and nonlinear methods. Taylor and Francis, New YorkGoogle Scholar
  17. 17.
    Hornero R, Aboy M, Abasolo D (2007) Analysis of intracranial pressure during acute intracranial hypertension using Lempel-Ziv complexity: further evidence. Med Biol Eng Comput 45:617–620CrossRefPubMedGoogle Scholar
  18. 18.
    Katzman R, Hussey F (1970) A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology 20:534–544PubMedGoogle Scholar
  19. 19.
    Kosteljanetz M (1985) Resistance to outflow of cerebrospinal fluid determined by bolus injection technique and constant rate steady state infusion in humans. Neurosurgery 16:336–340CrossRefPubMedGoogle Scholar
  20. 20.
    Lenfeldt N, Andersson N, Agren-Wilsson A, Bergenheim AT, Koskinen LO, Eklund A, Malm J (2004) Cerebrospinal fluid pulse pressure method: a possible substitute for the examination of B waves. J Neurosurg 101:944–950CrossRefPubMedGoogle Scholar
  21. 21.
    Ljung L (1999) System identification—theory for the user, 2nd edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  22. 22.
    Lundberg N (1960) Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand 36(Suppl 149):1–193Google Scholar
  23. 23.
    Malm J, Eklund A (2006) Idiopathic normal pressure hydrocephalus. Pract Neurol 6:14–27CrossRefGoogle Scholar
  24. 24.
    Malm J, Kristensen B, Karlsson T, Fagerlund M, Elfverson J, Ekstedt J (1995) The predictive value of cerebrospinal fluid dynamic tests in patients with idiopathic adult hydrocephalus syndrome. Arch Neurol 52:783–789PubMedGoogle Scholar
  25. 25.
    Manchester IR, Andersson K, Andersson N, Shiriaev AS, Eklund A (2008) A nonlinear observer for on-line estimation of the cerebrospinal fluid outflow resistance. Automatica 44:1426–1430CrossRefGoogle Scholar
  26. 26.
    Manchester IR, Andersson K, Eklund A, Shiriaev AS (2007) Experimental testing of a method for on-line identification of the cerebrospinal fluid system. Conf Proc IEEE Eng Med Biol Soc 2007:2843–2846PubMedGoogle Scholar
  27. 27.
    Manchester IR, Andersson K, Eklund A, Shiriaev AS (2007) Identifiability of the parameters of a nonlinear model of the cerebrospinal fluid system. In: Xia X, Camisani-Calzolari F (eds) Proceedings of the 7th IFAC symposium on nonlinear control systems, International Federation of Automatic Control, Laxenburg, Austria, Pretoria, South Africa. doi: 10.3182/20070822-3-US-00164
  28. 28.
    Marmarou A (1973) A theoretical model and experimental evaluation of the cerebrospinal fluid system. Ph.D. thesis, Drexel UniversityGoogle Scholar
  29. 29.
    Marmarou A, Bergsneider M, Klinge P, Relkin N, Black PM (2005) The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. Neurosurgery 57:17–28CrossRefGoogle Scholar
  30. 30.
    Marmarou A, Shulman K, Rosende RM (1978) A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg 48:332–344CrossRefPubMedGoogle Scholar
  31. 31.
    Raftopoulos C, Chaskis C, Delecluse F, Cantraine F, Bidaut L, Brotchi J (1992) Morphological quantitative analysis of intracranial pressure waves in normal pressure hydrocephalus. Neurol Res 14:389–396PubMedGoogle Scholar
  32. 32.
    Shapiro K, Marmarou A, Shulman K (1980) Characterization of clinical CSF dynamics and neural axis compliance using the pressure-volume index: I. The normal pressure-volume index. Ann Neurol 7:508–514CrossRefPubMedGoogle Scholar
  33. 33.
    Sorteberg A, Eide PK, Fremming AD (2004) A prospective study on the clinical effect of surgical treatment of normal pressure hydrocephalus: the value of hydrodynamic evaluation. Br J Neurosurg 18:149–157CrossRefPubMedGoogle Scholar
  34. 34.
    Stephensen H, Andersson N, Eklund A, Malm J, Tisell M, Wikkelso C (2005) Objective B wave analysis in 55 patients with non-communicating and communicating hydrocephalus. J Neurol Neurosurg Psychiatry 76:965–970CrossRefPubMedGoogle Scholar
  35. 35.
    Tans JT, Boon AJ (2002) How to select patients with normal pressure hydrocephalus for shunting. Acta Neurochir Suppl 81:3–5PubMedGoogle Scholar
  36. 36.
    Tullberg M, Jensen C, Ekholm S, Wikkelso C (2001) Normal pressure hydrocephalus: vascular white matter changes on MR images must not exclude patients from shunt surgery. AJNR Am J Neuroradiol 22:1665–1673PubMedGoogle Scholar
  37. 37.
    Wåhlin A, Ambarki K, Birgander R, Alperin N, Malm J, Eklund A (2010) Assessment of craniospinal pressure-volume indices. AJNR Am J Neuroradiol. doi: 10.3174/ajnr.A2166

Copyright information

© International Federation for Medical and Biological Engineering 2010

Authors and Affiliations

  • Kennet Andersson
    • 1
    • 2
    Email author
  • Ian R. Manchester
    • 3
    • 4
  • Jan Malm
    • 5
  • Anders Eklund
    • 1
    • 2
    • 6
  1. 1.Department of Radiation SciencesUmeå UniversityUmeåSweden
  2. 2.Department of Biomedical Engineering and InformaticsUmeå University HospitalUmeåSweden
  3. 3.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of Applied Physics and ElectronicsUmeå UniversityUmeåSweden
  5. 5.Department of Clinical NeuroscienceUmeå UniversityUmeåSweden
  6. 6.Centre of Biomedical Engineering and PhysicsUmeå UniversityUmeåSweden

Personalised recommendations