Medical & Biological Engineering & Computing

, Volume 48, Issue 10, pp 1055–1063 | Cite as

Biophotonic techniques for the study of malaria-infected red blood cells

  • Jakob M. A. Mauritz
  • Alessandro Esposito
  • Teresa Tiffert
  • Jeremy N. Skepper
  • Alice Warley
  • Young-Zoon Yoon
  • Pietro Cicuta
  • Virgilio L. Lew
  • Jochen R. Guck
  • Clemens F. Kaminski
Special Issue – Original Article


Investigation of the homeostasis of red blood cells upon infection by Plasmodium falciparum poses complex experimental challenges. Changes in red cell shape, volume, protein, and ion balance are difficult to quantify. In this article, we review a wide range of optical techniques for quantitative measurements of critical homeostatic parameters in malaria-infected red blood cells. Fluorescence lifetime imaging and tomographic phase microscopy, quantitative deconvolution microscopy, and X-ray microanalysis, are used to measure haemoglobin concentration, cell volume, and ion contents. Atomic force microscopy is briefly reviewed in the context of these optical methodologies. We also describe how optical tweezers and optical stretchers can be usefully applied to empower basic malaria research to yield diagnostic information on cell compliance changes upon malaria infection. The combined application of these techniques sheds new light on the detailed mechanisms of malaria infection providing potential for new diagnostic or therapeutic approaches.


Malaria Plasmodium falciparum FLIM FRET Optical tweezers Optical stretcher Haemoglobin concentration X-ray microanalysis Micropositioning EDS EPXMA Red cell model AFM 


  1. 1.
    Aikawa M (1997) Studies on falciparum malaria with atomic-force and surface-potential microscopes. Ann Trop Med Parasitol 91(7):689–692CrossRefPubMedGoogle Scholar
  2. 2.
    Aikawa M, Kamanura K, Shiraishi S, Matsumoto Y, Arwati H, Torii M, Ito Y, Takeuchi T, Tandler B (1996) Membrane knobs of unfixed Plasmodium falciparum infected erythrocytes: new findings as revealed by atomic force microscopy and surface potential spectroscopy. Exp Parasitol 84(3):339–343CrossRefPubMedGoogle Scholar
  3. 3.
    Akaki M, Nagayasu E, Nakano Y, Aikawa M (2002) Surface charge of Plasmodium falciparum merozoites as revealed by atomic force microscopy with surface potential spectroscopy. Parasitol Res 88(1):16–20CrossRefPubMedGoogle Scholar
  4. 4.
    Allen RJ, Kirk K (2004) Cell volume control in the Plasmodium-infected erythrocyte. Trends Parasitol 20(1):7–10; discussion 10-1CrossRefPubMedGoogle Scholar
  5. 5.
    Block SM (1990) Optical tweezers: a new tool for biophysics. In: Grinstein S, Foskett JK (ed) Noninvasive techniques in cell biology. Wiley-Liss, New York, p 375Google Scholar
  6. 6.
    Boutet de Monvel J, Le Calvez S, Ulfendahl M (2001) Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ. Biophys J 80(5):2455–2470CrossRefPubMedGoogle Scholar
  7. 7.
    Bronkhorst PJ, Streekstra GJ, Grimbergen J, Nijhof EJ, Sixma JJ, Brakenhoff GJ (1995) A new method to study shape recovery of red blood cells using multiple optical trapping. Biophys J 69(5):1666–1673CrossRefPubMedGoogle Scholar
  8. 8.
    Choi W, Fang-Yen C, Badizadegan K, Oh S, Lue N, Dasari RR, Feld MS (2007) Tomographic phase microscopy. Nat Methods 4(9):717–719CrossRefPubMedGoogle Scholar
  9. 9.
    De Cian A, Grellier P, Mouray E, Depoix D, Bertrand H, Monchaud D, Teulade-Fichou MP, Mergny JL, Alberti P (2008) Plasmodium telomeric sequences: structure, stability and quadruplex targeting by small compounds. ChemBioChem 9(16):2730–2739CrossRefPubMedGoogle Scholar
  10. 10.
    Degliesposti G, Kasam V, Da Costa A, Kang HK, Kim N, Kim DW, Breton V, Kim D, Rastelli G (2009) Design and discovery of plasmepsin II inhibitors using an automated workflow on large-scale grids. ChemMedChem 4(7):1164–1173CrossRefPubMedGoogle Scholar
  11. 11.
    Dobbe JG, Hardeman MR, Streekstra GJ, Strackee J, Ince C, Grimbergen CA (2002) Analyzing red blood cell-deformability distributions. Blood Cells Mol Dis 28(3):373–384CrossRefPubMedGoogle Scholar
  12. 12.
    Elder AD, Domin A, Schierle GSK, Lindon C, Pines J, Esposito A, Kaminski CF (2009) A quantitative protocol for dynamic measurements of protein interactions by Forster resonance energy transfer-sensitized fluorescence emission. J R Soc Interface 6:S59–S81CrossRefGoogle Scholar
  13. 13.
    Elder AD, Kaminski CF, Frank JH (2009) phi2FLIM: a technique for alias-free frequency domain fluorescence lifetime imaging. Optics Express 17(25):23181–23203CrossRefPubMedGoogle Scholar
  14. 14.
    Elliott JL, Saliba KJ, Kirk K (2001) Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum. Biochem J 355(Pt 3):733–739PubMedGoogle Scholar
  15. 15.
    Elliott DA, McIntosh MT, Hosgood HD III, Chen S, Zhang G, Baevova P, Joiner KA (2008) Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci USA 105(7):2463–2468CrossRefPubMedGoogle Scholar
  16. 16.
    Esposito A, Choimet J-B, Skepper J, Mauritz JM, Lew VL, Kaminski C, Tiffert T (2010) Quantitative imaging of human red blood cells infected with Plasmodium falciparum. Biophys J (in press)Google Scholar
  17. 17.
    Esposito A, Tiffert T, Mauritz JMA, Schlachter S, Bannister LH, Kaminski CF, Lew VL (2008) FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells. PLoS ONE 3(11):e3780CrossRefPubMedGoogle Scholar
  18. 18.
    Fernandez-Segura E, Warley A (2008) Electron probe X-ray microanalysis for the study of cell physiology. Methods Cell Biol 88:19–43CrossRefPubMedGoogle Scholar
  19. 19.
    Francis LW, Lewis PD, Wright CJ, Conlan RS (2010) Atomic force microscopy comes of age. Biol Cell 102(2):133–143Google Scholar
  20. 20.
    Garcia CR, Takeuschi M, Yoshioka K, Miyamoto H (1997) Imaging Plasmodium falciparum-infected ghost and parasite by atomic force microscopy. J Struct Biol 119(2):92–98CrossRefPubMedGoogle Scholar
  21. 21.
    Glushakova S, Yin D, Li T, Zimmerberg J (2005) Membrane transformation during malaria parasite release from human red blood cells. Curr Biol 15(18):1645–1650CrossRefPubMedGoogle Scholar
  22. 22.
    Glushakova S, Yin D, Gartner N, Zimmerberg J (2007) Quantification of malaria parasite release from infected erythrocytes: inhibition by protein-free media. Malar J 6:61CrossRefPubMedGoogle Scholar
  23. 23.
    Guck J, Ananthakrishnan R, Moon TJ, Cunningham CC, Kas J (2000) Optical deformability of soft biological dielectrics. Phys Rev Lett 84(23):5451–5454CrossRefPubMedGoogle Scholar
  24. 24.
    Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Kas J (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 81(2):767–784CrossRefPubMedGoogle Scholar
  25. 25.
    Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88(5):3689–3698CrossRefPubMedGoogle Scholar
  26. 26.
    Henon S, Lenormand G, Richert A, Gallet F (1999) A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys J 76(2):1145–1151CrossRefPubMedGoogle Scholar
  27. 27.
    Kaminski CF (2005) Fluorescence imaging of reactive processes. Zeitschrift Fur Physikalische Chemie—Int J Res Phys Chem Chem Phys 219(6):747–774Google Scholar
  28. 28.
    Kasas S, Thomson NH, Smith BL, Hansma PK, Miklossy J, Hansma HG (1997) Biological applications of the AFM: from single molecules to organs. Int J Imaging Syst Technol 8(2):151–161CrossRefGoogle Scholar
  29. 29.
    Kirk K (2001) Membrane transport in the malaria-infected erythrocyte. Physiol Rev 81(2):495–537PubMedGoogle Scholar
  30. 30.
    Kreysing MK, Kiessling T, Fritsch A, Dietrich C, Guck JR, Kas JA (2008) The optical cell rotator. Opt Express 16(21):16984–16992CrossRefPubMedGoogle Scholar
  31. 31.
    Krugliak M, Zhang J, Ginsburg H (2002) Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol Biochem Parasitol 119(2):249–256CrossRefPubMedGoogle Scholar
  32. 32.
    Kuhn Y, Rohrbach P, Lanzer M (2007) Quantitative pH measurements in Plasmodium falciparum-infected erythrocytes using pHluorin. Cell Microbiol 9(4):1004–1013CrossRefPubMedGoogle Scholar
  33. 33.
    Lautenschlager F, Paschke S, Schinkinger S, Bruel A, Beil M, Guck J (2009) The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc Natl Acad Sci USA 106(37):15696–15701CrossRefPubMedGoogle Scholar
  34. 34.
    Lee P, Ye Z, Van Dyke K, Kirk RG (1988) X-ray microanalysis of Plasmodium falciparum and infected red blood cells: effects of qinghaosu and chloroquine on potassium, sodium, and phosphorus composition. Am J Trop Med Hyg 39(2):157–165PubMedGoogle Scholar
  35. 35.
    Lew VL, Tiffert T (2007) Is invasion efficiency in malaria controlled by pre-invasion events? Trends Parasitol 23(10):481–484CrossRefPubMedGoogle Scholar
  36. 36.
    Lew VL, Tiffert T, Ginsburg H (2003) Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum-infected red blood cells. Blood 101(10):4189–4194CrossRefPubMedGoogle Scholar
  37. 37.
    Lincoln B, Schinkinger S, Travis K, Wottawah F, Ebert S, Sauer F, Guck J (2007) Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomed Microdevices 9(5):703–710CrossRefPubMedGoogle Scholar
  38. 38.
    Lincoln B, Wottawah F, Schinkinger S, Ebert S, Guck J (2007) High-throughput rheological measurements with an optical stretcher. Methods Cell Biol 83:397–423CrossRefPubMedGoogle Scholar
  39. 39.
    Marinkovic M, Diez-Silva M, Pantic I, Fredberg JJ, Suresh S, Butler JP (2009) Febrile temperature leads to significant stiffening of Plasmodium falciparum parasitized erythrocytes. Am J Physiol Cell Physiol 296(1):C59–C64CrossRefPubMedGoogle Scholar
  40. 40.
    Mauritz J, Tiffert T, Seear R, Lautenschlager F, Esposito A, Lew V, Guck J, Kaminski CF (2010) Detection of Plasmodium falciparum-infected red blood cells by optical stretching. J Biomed Opt 15:030517CrossRefPubMedGoogle Scholar
  41. 41.
    Mauritz JM, Esposito A, Ginsburg H, Kaminski CF, Tiffert T, Lew VL (2009) The homeostasis of Plasmodium falciparum-infected red blood cells. PLoS Comput Biol 5(4):e1000339CrossRefPubMedGoogle Scholar
  42. 42.
    Mens PF, van Overmeir C, Bonnet M, Dujardin JC, d’Alessandro U (2008) Real-time PCR/MCA assay using fluorescence resonance energy transfer for the genotyping of resistance related DHPS-540 mutations in Plasmodium falciparum. Malar J 7:48CrossRefPubMedGoogle Scholar
  43. 43.
    Nagao E, Kaneko O, Dvorak JA (2000) Plasmodium falciparum-infected erythrocytes: qualitative and quantitative analyses of parasite-induced knobs by atomic force microscopy. J Struct Biol 130(1):34–44CrossRefPubMedGoogle Scholar
  44. 44.
    Nagao E, Nishijima H, Akita S, Nakayama Y, Dvorak JA (2000) The cell biological application of carbon nanotube probes for atomic force microscopy: comparative studies of malaria-infected erythrocytes. J Electron Microsc 49(3):453–458Google Scholar
  45. 45.
    Nash GB, O’Brien E, Gordon-Smith EC, Dormandy JA (1989) Abnormalities in the mechanical properties of red blood cells caused by Plasmodium falciparum. Blood 74(2):855–861PubMedGoogle Scholar
  46. 46.
    Park YK, Diez-Silva M, Popescu G, Lykotrafitis G, Choi WS, Feld MS, Suresh S (2008) Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc Natl Acad Sci USA 105(37):13730–13735CrossRefPubMedGoogle Scholar
  47. 47.
    Peter M, Ameer-Beg SM (2004) Imaging molecular interactions by multiphoton FLIM. Biol Cell 96(3):231–236CrossRefPubMedGoogle Scholar
  48. 48.
    Remmerbach TW, Wottawah F, Dietrich J, Lincoln B, Wittekind C, Guck J (2009) Oral cancer diagnosis by mechanical phenotyping. Cancer Res 69(5):1728–1732CrossRefPubMedGoogle Scholar
  49. 49.
    Rohrbach P, Friedrich O, Hentschel J, Plattner H, Fink RH, Lanzer M (2005) Quantitative calcium measurements in subcellular compartments of Plasmodium falciparum-infected erythrocytes. J Biol Chem 280(30):27960–27969CrossRefPubMedGoogle Scholar
  50. 50.
    Safeukui I, Millet P, Boucher S, Melinard L, Fregeville F, Receveur MC, Pistone T, Fialon P, Vincendeau P, Fleury H, Malvy D (2008) Evaluation of FRET real-time PCR assay for rapid detection and differentiation of Plasmodium species in returning travellers and migrants. Malar J 7:70CrossRefPubMedGoogle Scholar
  51. 51.
    Saliba KJ, Horner HA, Kirk K (1998) Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium falciparum. J Biol Chem 273(17):10190–10195CrossRefPubMedGoogle Scholar
  52. 52.
    Sleep J, Wilson D, Simmons R, Gratzer W (1999) Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. Biophys J 77(6):3085–3095CrossRefPubMedGoogle Scholar
  53. 53.
    Staines HM, Ellory JC, Kirk K (2001) Perturbation of the pump-leak balance for Na(+) and K(+) in malaria-infected erythrocytes. Am J Physiol Cell Physiol 280(6):C1576–C1587PubMedGoogle Scholar
  54. 54.
    Suresh S (2006) Mechanical response of human red blood cells in health and disease: some structure-property-function relationships. J Mater Res 21(8):1871–1877CrossRefGoogle Scholar
  55. 55.
    Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1(1):15–30CrossRefPubMedGoogle Scholar
  56. 56.
    Tokumasu F, Dvorak J (2003) Development and application of quantum dots for immunocytochemistry of human erythrocytes. J Microsc 211(Pt 3):256–261PubMedGoogle Scholar
  57. 57.
    Tokumasu F, Fairhurst RM, Ostera GR, Brittain NJ, Hwang J, Wellems TE, Dvorak JA (2005) Band 3 modifications in Plasmodium falciparum-infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots. J Cell Sci 118(Pt 5):1091–1098CrossRefPubMedGoogle Scholar
  58. 58.
    Warley A (1997) X-ray microanalysis for biologists. In: Glauert AM (ed) Practical methods in electron microscopy, vol 16. Portland Press, London and MiamiGoogle Scholar
  59. 59.
    Warley A, Skepper JN (2000) Long freeze-drying times are not necessary during the preparation of thin sections for X-ray microanalysis. J Microsc 198(Pt 2):116–123CrossRefPubMedGoogle Scholar
  60. 60.
    Yoon YZ, Kotar J, Yoon G, Cicuta P (2008) The nonlinear mechanical response of the red blood cell. Phys Biol 5(3):36007CrossRefGoogle Scholar
  61. 61.
    Zanner MA, Galey WR, Scaletti JV, Brahm J, Vander Jagt DL (1990) Water and urea transport in human erythrocytes infected with the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 40(2):269–278CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2010

Authors and Affiliations

  • Jakob M. A. Mauritz
    • 1
    • 2
  • Alessandro Esposito
    • 1
    • 2
    • 8
  • Teresa Tiffert
    • 2
  • Jeremy N. Skepper
    • 2
  • Alice Warley
    • 3
  • Young-Zoon Yoon
    • 4
    • 5
  • Pietro Cicuta
    • 4
    • 6
  • Virgilio L. Lew
    • 2
  • Jochen R. Guck
    • 4
  • Clemens F. Kaminski
    • 1
    • 7
  1. 1.Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
  2. 2.Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
  3. 3.Centre For Ultrastructural ImagingKing’s College LondonLondonUK
  4. 4.Sector of Biological and Soft Systems, Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUK
  5. 5.Department of PhysicsSungkyunkwan UniversitySuwonKorea
  6. 6.Nanoscience CenterUniversity of CambridgeCambridgeUK
  7. 7.School for Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  8. 8.MRC Cancer Cell UnitHutchison/MRC Research CentreCambridgeUK

Personalised recommendations