Medical & Biological Engineering & Computing

, Volume 48, Issue 12, pp 1191–1201 | Cite as

A robust sliding mode controller with internal model for closed-loop artificial pancreas

  • Amjad Abu-Rmileh
  • Winston Garcia-Gabin
  • Darine Zambrano
Original Article


The study presents a robust closed-loop sliding mode controller with internal model for blood glucose control in type-1 diabetes. Type-1 diabetic patients depend on external insulin delivery to keep their blood glucose within near-normal ranges. Closed-loop artificial pancreas is developed to help avoid dangerous, potentially life-threatening hypoglycemia, as well as to prevent complication-inducing hyperglycemia. The proposed controller is designed using a combination of sliding mode and internal model control techniques. To enhance postprandial performance, a feedforward controller is added to inject insulin bolus. Simulation studies have been performed to test the controller, which revealed that the proposed control strategy is able to control the blood glucose well within the safe limits in the presence of meals and measurements errors. The controller shows acceptable robustness against changes in insulin sensitivity, model–patient mismatch, and errors in estimating meal’s contents.


Artificial pancreas Internal model control Sliding mode control Type-1 diabetes mellitus 



Amjad Abu-Rmileh acknowledges the BR research grant of the University of Girona.


  1. 1.
    Abu-Rmileh A, Garcia-Gabin W (2010) Feedforward-feedback multiple predictive controllers for glucose regulation in type 1 diabetes. Comput Meth Programs Biomed 99(1):113–123CrossRefGoogle Scholar
  2. 2.
    Abu-Rmileh A, Garcia-Gabin W, Zambrano D (2010) Internal model sliding mode control approach for glucose regulation in type 1 diabetes. Biomed Signal Process Control 5(2):94–102CrossRefGoogle Scholar
  3. 3.
    Bequette B (2005) A critical assessment of algorithms and challenges in the development of a closed-loop artificial pancreas. Diabetes Technol Ther 7(1):28–46CrossRefPubMedGoogle Scholar
  4. 4.
    Bergman R, Ider Y, Bowden C, Cobelli C (1979) Quantitative estimation of insulin sensitivity. Am J Physiol 236:E667PubMedGoogle Scholar
  5. 5.
    Breton M, Kovatchev B (2008) Analysis, modeling, and simulation of the accuracy of continuous glucose sensors. J Diabetes Sci Technol 2(5):853–862PubMedGoogle Scholar
  6. 6.
    Camacho O, Rojas R, Garcia-Gabin W (1999) Variables structure control to inverse response systems with dead time. ISA Trans 38(1):87–99CrossRefGoogle Scholar
  7. 7.
    Camacho O, Rojas R, Garcia-Gabin W (2007) Some long time delay sliding mode control approaches. ISA Trans 46(1):95–101CrossRefPubMedGoogle Scholar
  8. 8.
    Chee F, Fernando T (2007) Closed-loop control of blood glucose. Springer, LondonGoogle Scholar
  9. 9.
    Dalla Man C, Camilleri M, Cobelli C (2006) A system model of oral glucose absorption: validation on gold standard data. IEEE Trans Biomed Eng 53(12):2472–2478CrossRefPubMedGoogle Scholar
  10. 10.
    Dalla Man C, Rizza R, Cobelli C (2007) Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng 54(10):1740–1749CrossRefPubMedGoogle Scholar
  11. 11.
    Dua P, Doyle III F, Pistikopoulos E (2009) Multi-objective blood glucose control for type 1 diabetes. Med Biol Eng Comput 47(3):343–52CrossRefPubMedGoogle Scholar
  12. 12.
    Fabietti P, Canonico V, Federici M, Benedetti M, Sarti E (2006) Control oriented model of insulin and glucose dynamics in type 1 diabetics. Med Biol Eng Comput 44(1–2):69–78CrossRefPubMedGoogle Scholar
  13. 13.
    Garcia-Gabin W, Vehí J, Bondia J, Tarín C, Calm R (2008) Robust sliding mode closed-loop glucose control with meal compensation in type 1 diabetes mellitus. In: 17th IFAC World Congress, Seoul, Korea, pp 4240–4245Google Scholar
  14. 14.
    Garcia-Gabin W, Dorado F, Bordons C (2010) Real-time implementation of a sliding mode controller for air supply on a PEM fuel cell. J Process Control 20(3):325–336CrossRefGoogle Scholar
  15. 15.
    Hovorka R, Shojaee-Moradie F, Carroll P, Chassin L, Gowrie I, Jackson N, Tudor R, Umpleby A, Jones R (2002) Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT. Am J Physiol Endocrinol Metab 282(5):992–1007Google Scholar
  16. 16.
    Hovorka R, Canonico V, Chassin L, Haueter U, Massi-Benedetti M, Orsini Federici M, Pieber T, Schaller H, Schaupp L, Vering T, Wilinska M (2004) Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 25(4):905–920CrossRefPubMedGoogle Scholar
  17. 17.
    Hovorka R, Wilinska M, Chassin L, Dunger D (2006) Roadmap to the artificial pancreas. Diabetes Res Clin Pract 74(2):S178–S182CrossRefGoogle Scholar
  18. 18.
    Hovorka R, Acerini C, Allen J, Chassin L, Larsen A, De Palma A, Wilinska M, Dunger D (2008) Overnight sc-sc closedloop control improves glucose control and reduces risk of hypoglycaemia in children and adolescents with type 1 diabetes. Diabetes 57(Suppl 1):A22Google Scholar
  19. 19.
    Klonoff D (2005) Continuous glucose monitoring, roadmap for 21st century diabetes therapy. Diabetes Care 28(5):1231–1239CrossRefPubMedGoogle Scholar
  20. 20.
    Kovatchev B, Clarke W, Breton M, Brayman K, McCall A (2005) Quantifying temporal glucose variability in diabetes via continuous glucose monitoring: mathematical methods and clinical application. Diabetes Technol Ther 7(6):849–862CrossRefPubMedGoogle Scholar
  21. 21.
    Kovatchev B, Otto E, Cox D, Gonder-Frederick L, Clarke W (2006) Evaluation of a new measure of blood glucose variability in diabetes. Diabetes Care 29(11):2433–2438CrossRefPubMedGoogle Scholar
  22. 22.
    Lee H, Bequette B (2009) A closed-loop artificial pancreas based on model predictive control: human friendly identification and automatic meal disturbance rejection. Biomed Signal Process Control 4(4):347–354CrossRefGoogle Scholar
  23. 23.
    Magni L, Raimondo D, Dalla Man C, De Nicolao G, Kovatchev B, Cobelli C (2009) Model predictive control of type 1 diabetes: an in silico trial. Biomed Signal process control 4(4):338–346CrossRefGoogle Scholar
  24. 24.
    Marchetti G, Barolo M, Jovanovic L, Zisser H, Seborg D (2008) A feedforward-feedback glucose control strategy for type 1 diabetes mellitus. J Process Control 18(2):149–162CrossRefPubMedGoogle Scholar
  25. 25.
    Palerm C, Zisser H, Jovanovic L, Doyle III F (2007) A run-to-run control strategy to adjust basal insulin infusion rates in type 1 diabetes. J Process Control 18(3–4):258–265CrossRefPubMedGoogle Scholar
  26. 26.
    Ramprasad Y, Rangaiah G, Lakshminarayanan S (2006) Enhanced IMC for glucose control in type i diabetic using a detalied physiological model. Food Bioprod Process 84(C3):227–336CrossRefGoogle Scholar
  27. 27.
    Scheiner G, Boyer B (2005) Characteristics of basal insulin requirements by age and gender in type 1 diabetes patients using insulin pump therapy. Diabetes Res Clin Pract 69(1):14–21CrossRefPubMedGoogle Scholar
  28. 28.
    Slotine J, Li W (1991) Applied nonlinear control. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  29. 29.
    Smith CA, Corripio AB (1997) Principles and practice of automatic process control, 2nd edn. Wiley, New YorkGoogle Scholar
  30. 30.
    Sorensen J (1985) A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. Ph.D. thesis, Department of Chemical Engineering, MITGoogle Scholar
  31. 31.
    Steil G, Pantaleon A, Rebrin K (2004) Closed-loop insulin delivery—the path to physiological glucose control. Adv Drug Delivery Rev 56(2):125–144CrossRefGoogle Scholar
  32. 32.
    Steil G, Rebrin K, Darwin C, Hariri F, Saad M (2006) Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes 55(12):3344–3350CrossRefPubMedGoogle Scholar
  33. 33.
    Utkin V (1981) Sliding modes in control and optimization. Springer, MoscowGoogle Scholar
  34. 34.
    Utkin V, Guldner J, Shi J (1999) Sliding modes in electromechanical systems. Taylor-Francis, LondonGoogle Scholar
  35. 35.
    Weinzimer SA, Steil G, Karena S, Dziura J, Kurtiz N, Tamborlane W (2008) Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31(5):934–939CrossRefPubMedGoogle Scholar
  36. 36.
    Yamaguchi M, Kaseda C, Yamazaki K, Kobayashi M (2006) Prediction of blood glucose level of type 1 diabetics using response surface methodology and data mining. Med Biol Eng Comput 44(6):451–457CrossRefPubMedGoogle Scholar
  37. 37.
    Zinober A (1994) Variable structure and Lyapunov control. Springer, LondonCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2010

Authors and Affiliations

  • Amjad Abu-Rmileh
    • 1
  • Winston Garcia-Gabin
    • 1
  • Darine Zambrano
    • 1
  1. 1.Department of Electrical, Electronics and Control EngineeringUniversity of GironaGironaSpain

Personalised recommendations