Medical & Biological Engineering & Computing

, Volume 49, Issue 1, pp 15–24 | Cite as

Acoustic thoracic image of crackle sounds using linear and nonlinear processing techniques

  • Sonia Charleston-Villalobos
  • Guadalupe Dorantes-Méndez
  • Ramón González-Camarena
  • Georgina Chi-Lem
  • José G. Carrillo
  • Tomás Aljama-Corrales
Original Article

Abstract

In this study, a novel approach is proposed, the imaging of crackle sounds distribution on the thorax based on processing techniques that could contend with the detection and count of crackles; hence, the normalized fractal dimension (NFD), the univariate AR modeling combined with a supervised neural network (UAR-SNN), and the time-variant autoregressive (TVAR) model were assessed. The proposed processing schemes were tested inserting simulated crackles in normal lung sounds acquired by a multichannel system on the posterior thoracic surface. In order to evaluate the robustness of the processing schemes, different scenarios were created by manipulating the number of crackles, the type of crackles, the spatial distribution, and the signal to noise ratio (SNR) at different pulmonary regions. The results indicate that TVAR scheme showed the best performance, compared with NFD and UAR-SNN schemes, for detecting and counting simulated crackles with an average specificity very close to 100%, and average sensitivity of 98 ± 7.5% even with overlapped crackles and with SNR corresponding to a scaling factor as low as 1.5. Finally, the performance of the TVAR scheme was tested against a human expert using simulated and real acoustic information. We conclude that a confident image of crackle sounds distribution by crackles counting using TVAR on the thoracic surface is thoroughly possible. The crackles imaging might represent an aid to the clinical evaluation of pulmonary diseases that produce this sort of adventitious discontinuous lung sounds.

Keywords

Discontinuous adventitious sound imaging Lung sound Fine and coarse crackles Time-variant autoregressive model Fractal dimension 

References

  1. 1.
    Al Jarad N, Davies SW, Logan-Sinclair R, Rudd RM (1994) Lung crackle characteristics in patients with asbestosis, asbestos-related pleural disease and left ventricular failure using a time-expanded waveform analysis—a comparative study. Respir Med 88:37–46CrossRefPubMedGoogle Scholar
  2. 2.
    Charleston-Villalobos S, Cortés-Rubiano S, González-Camarena R, Chi-Lem G, Aljama-Corrales T (2004) Respiratory acoustic thoracic imaging (RATHI): assessing deterministic interpolation techniques. Med Biol Eng Comput 42:618–626CrossRefPubMedGoogle Scholar
  3. 3.
    Charleston-Villalobos S, González-Camarena R, Chi-Lem G, Aljama-Corrales T (2007) Crackle sounds analysis by empirical mode decomposition. IEEE Eng Med Biol Mag 26(1):40–47CrossRefPubMedGoogle Scholar
  4. 4.
    Dellinger RP, Jean S, Cinel I, Tay C, Rajanala S, Glickman YA, Parrillo JE (2007) Regional distribution of acoustic-based lung vibration as a function of mechanical ventilation mode. Crit Care 11(1):R26Google Scholar
  5. 5.
    Dellinger RP, Parrillo JE, Kushnir A, Rossi M, Kushnir I (2008) Dynamic visualization of lung sounds with a vibration response device: a case series. Respiration 75(1):60–72CrossRefPubMedGoogle Scholar
  6. 6.
    Dosani R, Kraman SS (1983) Lung sound intensity variability in normal men. A contour phonopneumographic study. Chest 83:628–631CrossRefPubMedGoogle Scholar
  7. 7.
    Duda OR, Hart EP, Store GD (2001) Pattern classification. Wiley, New YorkGoogle Scholar
  8. 8.
    Hadjileontiadis LJ (2007) Empirical mode decomposition and fractal dimension filter: a novel technique for denoising explosive lung sounds. IEEE Eng Med Biol Mag 26(1):30–39CrossRefPubMedGoogle Scholar
  9. 9.
    Hadjileontiadis LJ (2009) A texture-based classification of crackles and squawks using lacunarity. IEEE Trans Biomed Eng 56(3):718–732PubMedGoogle Scholar
  10. 10.
    Hadjileontiadis LJ, Panas SM (1996) Nonlinear separation of crackles and squawks from vesicular sounds using third-order statistics. In: Proceedings 18th annual international conference IEEE-EMBS, Amsterdam, Netherlands, pp 2217–2220Google Scholar
  11. 11.
    Hadjileontiadis LJ, Panas SM (1997) Separation of discontinuous adventitious sounds from vesicular sounds using a wavelet-based filter. IEEE Trans Biomed Eng 44:1269–1281CrossRefPubMedGoogle Scholar
  12. 12.
    Hadjileontiadis LJ, Rekanos IT (2003) Detection of explosive lung and bowel sounds by means of fractal dimension. IEEE Signal Process Lett 10(10):311–314CrossRefGoogle Scholar
  13. 13.
    Haykin S (1998) Adaptive filter theory. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  14. 14.
    Hoevers J, Loudon R (1990) Measuring crackles. Chest 98:1240–1243CrossRefPubMedGoogle Scholar
  15. 15.
    Kaisla TK, Sovijärvi ARA, Piirilä P, Rajala HM, Haltsonen S, Rosqvist T (1991) Validated method for automatic detection of lung sounds crackles. Med Biol Eng Comput 29:517–521CrossRefPubMedGoogle Scholar
  16. 16.
    Katz MJ (1988) Fractals and the analysis of waveforms. Comput Biol Med 18:145–156CrossRefPubMedGoogle Scholar
  17. 17.
    Kiyokawa H, Greenberg M, Shirota K, Pasterkamp H (2001) Auditory detection of simulated crackles in breath sounds. Chest 119:1886–1892CrossRefPubMedGoogle Scholar
  18. 18.
    Kompis M, Pasterkamp H, Wodicka GR (2001) Acoustic imaging of the human chest. Chest 120:1309–1321CrossRefPubMedGoogle Scholar
  19. 19.
    Ljung L (1987) System identification. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  20. 20.
    Lu S, Ju KH, Chon KH (2001) A new algorithm for linear and nonlinear ARMA model parameter estimation using affine geometry. IEEE Trans Biomed Eng 48(10):1116–1124CrossRefPubMedGoogle Scholar
  21. 21.
    Mangione S, Nieman LZ (1999) Pulmonary auscultatory skills during training in internal medicine and family practice. Am J Respir Crit Care Med 159(4 Pt 1):1119–1124PubMedGoogle Scholar
  22. 22.
    Martinez-Hernandez HG, Aljama-Corrales T, Gonzalez-Camarena R, Charleston-Villalobos S, Chi-Lem G (2005) Computerized classification of normal and abnormal lung sounds by multivariate linear autoregressive model. In: Proceeding 27th annual international conference IEEE/EMBS, Shanghai, China, pp 1464–1467Google Scholar
  23. 23.
    Mor R, Kushnir I, Meyer J, Ekstein J, Ben-Dov I (2007) Breath sound distribution images of patients with pneumonia and pleural effusion. Respir Care 52(12):1753–1760PubMedGoogle Scholar
  24. 24.
    Mori M, Kinoshita K, Morinari H, Shiraishi T, Koike S, Murao S (1980) Waveform and spectral analysis of crackles. Thorax 35:843–850CrossRefPubMedGoogle Scholar
  25. 25.
    Munakata M, Ukita H, Doi I, Ohtsuka Y, Masaki Y, Homma Y, Kawakami Y (1991) Spectral and waveform characteristics of fine and coarse crackles. Thorax 46:651–757CrossRefPubMedGoogle Scholar
  26. 26.
    Murphy RL, Holford SK, Knowler WC (1977) Visual lung sound characterization by time-expanded waveform analysis. N Engl J Med 296:968–971CrossRefPubMedGoogle Scholar
  27. 27.
    Ono M, Arakawa K, Mori M, Sugimoto T, Harashima H (1989) Separation of fine crackles from vesicular sounds by a nonlinear digital filter. IEEE Trans Biomed Eng 36:286–291CrossRefPubMedGoogle Scholar
  28. 28.
    Piirilä P, Sovijärvi ARA (1995) Crackles: recording, analysis and clinical significance. Eur Respir J 8:2139–2148CrossRefPubMedGoogle Scholar
  29. 29.
    Piirilä P, Sovijärvi ARA, Kaisla T, Rajala HM, Katila T (1991) Crackles in patients with fibrosing alveolitis, bronchiectasis, COPD, and heart failure. Chest 99:1076–1083CrossRefPubMedGoogle Scholar
  30. 30.
    Reichert S, Gass R, Brandt C, Andres E (2008) Analysis of respiratory sounds: state of the art. Clin Med 2:45–58Google Scholar
  31. 31.
    Ryu JH, Daniels CE, Hartman TE, Yi ES (2007) Diagnosis of interstitial lung diseases. Mayo Clin Proc 82(8):976–986CrossRefPubMedGoogle Scholar
  32. 32.
    Tolias YA, Hadjileontiadis LJ, Panas SM (1998) Real-time separation of discontinuous adventitious sounds from vesicular sounds using a fuzzy rule-based filter. IEEE Trans Inf Technol Biomed 2:204–215CrossRefPubMedGoogle Scholar
  33. 33.
    Vyshedskiy A, Bezares F, Paciej R, Ebril M, Shane J, Murphy R (2005) Transmission of crackles in patients with interstitial pulmonary fibrosis, congestive heart failure and pneumonia. Chest 128:1468–1474CrossRefPubMedGoogle Scholar
  34. 34.
    Vyshedskiy A, Alhashem RM, Paciej R, Ebril M, Rudman I, Fredberg JJ, Murphy R (2009) Mechanism of inspiratory and expiratory crackles. Chest 135:156–164CrossRefPubMedGoogle Scholar
  35. 35.
    Zou R, Wang H, Chon KH (2003) A robust time-varying identification algorithm using basis functions. Ann Biomed Eng 31(7):840–853CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2010

Authors and Affiliations

  • Sonia Charleston-Villalobos
    • 1
  • Guadalupe Dorantes-Méndez
    • 1
  • Ramón González-Camarena
    • 2
  • Georgina Chi-Lem
    • 3
  • José G. Carrillo
    • 3
  • Tomás Aljama-Corrales
    • 1
  1. 1.Department of Electrical EngineeringUniversidad Autónoma MetropolitanaMexico CityMexico
  2. 2.Department of Health ScienceUniversidad Autónoma MetropolitanaMexico CityMexico
  3. 3.National Institute of Respiratory DiseasesMexico CityMexico

Personalised recommendations