Medical & Biological Engineering & Computing

, Volume 48, Issue 8, pp 793–798

Static magnetic field exposure promotes differentiation of osteoblastic cells grown on the surface of a poly-l-lactide substrate

  • Sheng-Wei Feng
  • Yi-June Lo
  • Wei-Jen Chang
  • Che-Tong Lin
  • Sheng-Yang Lee
  • Yoshimitsu Abiko
  • Haw-Ming Huang
Original Article

Abstract

This study investigated the effects of static magnetic fields on the differentiation of MG63 cells cultured on the surface of poly-l-lactide (PLLA) substrates. The cells were continuously exposed to a 4,000 Gauss-static magnetic field (SMF) for 5 days. The proliferation effects of the SMF were measured by MTT assay. Morphologic changes and extracellular matrix release were observed by scanning electron microscopy. The effects of the SMF on alkaline phosphatase activity levels were compared between exposed and unexposed cells. The SMF-exposed cells exhibited decreased MTT values after 1 and 3 days of culture. In addition, SMF exposure promoted the expression of extracellular matrix in MG63 cells on the PLLA substrate. After 1 day, the alkaline phosphatase-specific activity of SMF-exposed MG63 cells was significantly increased (P < 0.05) with a ratio of 1.5-fold. These results show that MG63 cells, seeded on a PLLA disc and treated with SMF, had a more differentiated phenotype.

Keywords

Static magnetic field PLLA MG63 Differentiation 

References

  1. 1.
    Aaron RK, Ciombor DM (1996) Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool. J Orthop Res 14:582–589CrossRefPubMedGoogle Scholar
  2. 2.
    Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681CrossRefPubMedGoogle Scholar
  3. 3.
    Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS (2006) Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 27:596–606CrossRefPubMedGoogle Scholar
  4. 4.
    Barbanti SH, Santos AR, Zavaglia CA, Duek EA (2004) Porous and dense poly(l-lactic acid) and poly(d, l-lactic acid-co-glycolic acid) scaffolds: in vitro degradation in culture medium and osteoblasts culture. J Mater Sci Mater Med 15:1315–1321CrossRefPubMedGoogle Scholar
  5. 5.
    Chiu KH, Ou KL, Lee SY, Lin CT, Chang WJ, Chen CH, Huang HM (2007) Static magnetic fields promote osteoblast-like cells differentiation via increasing the membrane rigidity. Ann Biomed Eng 35:1932–1939CrossRefPubMedGoogle Scholar
  6. 6.
    Cortellini P, Pini Prato G, Tonetti MS (1996) Periodontal regeneration of human intrabony defects with bioresorbable membranes. A controlled clinical trial. J Periodontol 67:217–223PubMedGoogle Scholar
  7. 7.
    Darendeliler MA, Sinclair PM, Kusy RP (1995) The effects of samarium-cobalt magnets and pulsed electromagnetic fields on tooth movement. Am J Orthod Dentofac Orthop 107:578–588CrossRefGoogle Scholar
  8. 8.
    Fassina L, Visai L, Benazzo F, Benedetti L, Calligaro A, De Angelis MGC, Farina A, Malliardi V, Magenes G (2006) Effects of electromagnetic stimulation on calcified matrix production by SAOS-2 cells over a polyurethane porous scaffold. Tissue Eng 12:1985–1999CrossRefPubMedGoogle Scholar
  9. 9.
    Fini M, Giavaresi G, Giardino R, Cavani F, Cadossi R (2006) Histomorphometric and mechanical analysis of the hydroxyapatite-bone interface after electromagnetic stimulation. J Bone Joint Surg 87B:123–128Google Scholar
  10. 10.
    Gottlow J, Laurell L, Lundgren D, Mathisen T, Nyman S, Rylander H, Bogentoft C (1994) Periodontal tissue response to a new bioresorbable guided tissue regeneration device: a longitudinal study in monkeys. Int J Periodontics Restor Dent 14:436–449Google Scholar
  11. 11.
    Huang HM, Lee SY, Yao WC, Lin CT, Yeh CY (2006) Static magnetic fields up-regulate osteoblast maturity by affecting local differentiation factors. Clin Orthop Rel Res 447:201–208CrossRefGoogle Scholar
  12. 12.
    Ishaug SL, Yaszemski MJ, Bizios R, Mikos AG (1994) Osteoblast function on synthetic biodegradable polymers. J Biomed Mater Res 28:1445–1453CrossRefPubMedGoogle Scholar
  13. 13.
    Kim HJ, Chang IT, Heo SJ, Koak JY, Kim SK, Jang JH (2005) Effect of magnetic field on the fibronectin adsorption, cell attachment and proliferation on titanium surface. Clin Oral Implants Res 16:557–562CrossRefPubMedGoogle Scholar
  14. 14.
    Kotani H, Kawaguchi H, Shimoaka T, Iwasaka M, Ueno S, Ozawa H, Nakamura KM, Hoshi K (2002) Strong static magnetic stimulates bone formation to a definite orientation in vitro and in vivo. J Bone Miner Res 17:1814–1821CrossRefPubMedGoogle Scholar
  15. 15.
    Lee SY, Tseng H, Ou KL, Yang JC, Ho KN, Lin CT, Huang HM (2008) Residual stress patterns affect cell distributions on injection-molded poly-l-lactide substrate. Ann Biomed Eng 36:513–521CrossRefPubMedGoogle Scholar
  16. 16.
    Liu HC, Lee IC, Wang JH, Yang SH, Young TH (2004) Preparation of PLLA membranes with different morphologies for culture of MG63 Cells. Biomaterials 25:4047–4056CrossRefPubMedGoogle Scholar
  17. 17.
    Lohmann CH, Schwartz Z, Liu Y, Guerkov H, Dean DD (2000) Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local production. J Orthop Res 18:637–646CrossRefPubMedGoogle Scholar
  18. 18.
    Mackenzie D, Veninga FD (2004) Reversal of delayed union of anterior cervical fusion treated with pulsed electromagnetic field stimulation: case report. South Med J 97:519–524CrossRefPubMedGoogle Scholar
  19. 19.
    Mullender M, El Haj AJ, Yang Y, van Duin MA, Burger EH, Klein-Nulend J (2004) Mechanotranduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput 43:14–21CrossRefGoogle Scholar
  20. 20.
    Riley MA, Walmsley AD, Harris IR (2001) Magnets in prosthetic dentistry. J Prosthet Dent 86:137–142CrossRefPubMedGoogle Scholar
  21. 21.
    Rubin J, Rubin C, Jacobs CR (2006) Molecular pathways mediating mechanical signaling in bone. Gene 367:1–16CrossRefPubMedGoogle Scholar
  22. 22.
    Sato M, Ishihara M, Furukawa K, Kaneshiro N, Nagai T, Mitani G, Kutsuna T, Ohta N, Kokubo M, Kikuchi T, Sakai H, Ushida T, Kikuchi M, Mochida J (2008) Recent technological advancements related to articular cartilage regeneration. Med Biol Eng Comput 46:735–743CrossRefPubMedGoogle Scholar
  23. 23.
    Shimizu E, Matsuda-Honjyo Y, Samoto H, Saito R, Nakajima Y, Nakayama Y, Kato N, Yamazaki M, Ogata Y (2004) Static magnetic fields-induced bone sialoprotein (BSP) expression is mediated through FGF2 response element and pituitary-specific transcription factor-1 motif. J Cell Biochem 91:1183–1196CrossRefPubMedGoogle Scholar
  24. 24.
    Stein GS, Lian JB (1993) Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev 14:424–442PubMedGoogle Scholar
  25. 25.
    Suh H, Hwang YS, Lee JE, Han CD, Park JC (2001) Behavior of osteoblasts on a type I atelocollagen grafted ozone oxidized poly l-lactic acid membrane. Biomaterials 22:219–230CrossRefPubMedGoogle Scholar
  26. 26.
    Tsai MT, Chang WHS, Chang K, Hou RJ, Wu TW (2007) Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering. Bioelectromagnetics 28:519–528CrossRefPubMedGoogle Scholar
  27. 27.
    Van Cleynenbreugel T, Schrooten J, Van Oosterwyck H, Vander Sloten J (2006) Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering scaffolds. Med Biol Eng Comput 44:517–525CrossRefPubMedGoogle Scholar
  28. 28.
    Wang JHC, Thampatty BP (2006) An introductory review of cell mechanobilogy. Biomech Model Mechanobiol 5:1–16CrossRefPubMedGoogle Scholar
  29. 29.
    Washburn NR, Yamada KM, Simon CG Jr, Kennedy SB, Amis EJ (2004) High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials 25:1215–1224CrossRefPubMedGoogle Scholar
  30. 30.
    Yamamoto Y, Ohsaki Y, Goto T, Nakasima A, Iijima T (2003) Effects of static magnetic fields on bone formation in rat osteoblast cultures. J Dent Res 82:962–966CrossRefPubMedGoogle Scholar
  31. 31.
    Yang J, Shi GX, Bei JZ, Wang SG, Cao YL, Shang QX, Yang GG, Wang WJ (2002) Fabrication and surface modification of macroporous poly(l-lactic acid) and poly(l-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res 62:438–446CrossRefPubMedGoogle Scholar
  32. 32.
    Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D (2004) Time dependent morphology and adhesion of osteoblastic cells on titanium model surface featuring scale-resolved topography. Biomaterials 25:2695–2711CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2010

Authors and Affiliations

  • Sheng-Wei Feng
    • 1
  • Yi-June Lo
    • 2
  • Wei-Jen Chang
    • 1
  • Che-Tong Lin
    • 1
  • Sheng-Yang Lee
    • 1
  • Yoshimitsu Abiko
    • 3
  • Haw-Ming Huang
    • 4
    • 5
    • 6
  1. 1.School of DentistryTaipei Medical UniversityTaipeiTaiwan, ROC
  2. 2.Dental Department of Wan-Fang HospitalTaipei Medical UniversityTaipeiTaiwan, ROC
  3. 3.Department of Biochemistry, School of Dentistry at MatsudoNihon UniversityChibaJapan
  4. 4.Graduate Institute of Biomedical Materials and EngineeringTaipei Medical UniversityTaipeiTaiwan, ROC
  5. 5.Research Center for Biomedical Implants and Microsurgery DevicesTaipei Medical UniversityTaipeiTaiwan, ROC
  6. 6.Research Center for Biomedical DevicesTaipei Medical UniversityTaipeiTaiwan, ROC

Personalised recommendations