Medical & Biological Engineering & Computing

, Volume 48, Issue 8, pp 745–753 | Cite as

Dynamics of magnetic particles in cylindrical Halbach array: implications for magnetic cell separation and drug targeting

  • Peter BabinecEmail author
  • Andrej Krafčík
  • Melánia Babincová
  • Joseph Rosenecker
Original Article


Magnetic nanoparticles for therapy and diagnosis are at the leading edge of the rapidly developing field of bionanotechnology. In this study, we have theoretically studied motion of magnetic nano- as well as micro-particles in the field of cylindrical Halbach array of permanent magnets. Magnetic flux density was modeled as magnetostatic problem by finite element method and particle motion was described using system of ordinary differential equations—Newton law. Computations were done for nanoparticles Nanomag®-D with radius 65 nm, which are often used in magnetic drug targeting, as well as microparticles DynaBeads-M280 with radius 1.4 µm, which can be used for magnetic separation. Analyzing snapshots of trajectories of hundred magnetite particles of each size in the water as well as in the air, we have found that optimally designed magnetic circuits of permanent magnets in quadrupolar Halbach array have substantially shorter capture time than simple blocks of permanent magnets commonly used in experiments, therefore, such a Halbach array may be useful as a potential source of magnetic field for magnetic separation and targeting of magnetic nanoparticles as well as microparticles for delivery of drugs, genes, and cells in various biomedical applications.


Magnetic separation Drug targeting Halbach arrays High-gradient magnetic field 



This work was supported by VEGA Grant 1/0082/08 and Magselectofection project of 6. FP of EU under the contract No.: LSHB-CT-2006-019038.


  1. 1.
    Radbruch A, Mechtold B, Thiel A, Miltenyi S, Pflüger E (1994) High-gradient magnetic cell sorting. Method Cell Biol B 42:387–403CrossRefGoogle Scholar
  2. 2.
    Käppler T, Cerff M, Ottow K, Hobley T, Posten C (2009) In situ magnetic separation for extracellular protein production. Biotechnol Bioeng 102:535–545CrossRefPubMedGoogle Scholar
  3. 3.
    Babincová M, Čičmanec P, Altanerová V, Altaner Č, Babinec P (2002) AC-magnetic field controlled drug release from magnetoliposomes: design of a method for site-specific chemotherapy. Bioelectrochemistry 55:17–19CrossRefPubMedGoogle Scholar
  4. 4.
    Babincová M, Leszczynska D, Sourivong P, Babinec P, Leszczynski J (2004) Principles of magnetodynamic chemotherapy. Med Hypotheses 62:375–377CrossRefPubMedGoogle Scholar
  5. 5.
    Babinec P, Babincová M, Sourivong P, Leszczynska D (2005) Efficient treatment of pigmented B16 melanoma using photosensitized long-circulating magnetofullerenosomes. J Magn Magn Mater 293:394–397CrossRefGoogle Scholar
  6. 6.
    Babincová M, Altanerová V, Altaner Č, Bergemann C, Babinec P (2008) In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia. IEEE Trans Nanobiosci 7:15–19CrossRefGoogle Scholar
  7. 7.
    Babincová M, Babinec P, Bergemann C (2001) High-gradient magnetic capture of ferrofluids: implications for drug targeting and tumor embolization. Z Naturforsch C 56:909–911PubMedGoogle Scholar
  8. 8.
    Plank C, Schillinger U, Scherer F, Bergemann C, Rémy JS, Krötz F, Anton M, Lausier J, Rosenecker J (2003) The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem 384:737–747CrossRefPubMedGoogle Scholar
  9. 9.
    Schillinger U, Brill T, Rudolph C, Huth S, Gersting S, Krötz F, Hirschberger J, Bergemann C, Plank C (2005) Advances in magnetofection—magnetically guided nucleic acid delivery. J Magn Magn Mater 293:501–508CrossRefGoogle Scholar
  10. 10.
    Babincová M, Altanerová V, Lampert M, Altaner C, Machová E, Srámka M, Babinec P (2000) Site-specific in vivo targeting of magnetoliposomes using externally applied magnetic field. Z Naturforsch C 55:278–281PubMedGoogle Scholar
  11. 11.
    Mykhaylyk O, Antequera YS, Vlaskou D, Plank C (2007) Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc 2:2391–2411CrossRefPubMedGoogle Scholar
  12. 12.
    Zborowski M, Sun L, Moore LR, Williams PS, Chalmers JJ (1999) Continuous cell separation using novel magnetic quadrupole flow sorter. J Magn Magn Mater 194:224–230CrossRefGoogle Scholar
  13. 13.
    Krafčík A, Babincová M, Babinec P (2009) Theoretical analysis of magnetic particle trajectory in high-current pulsed quadrupole: implications for magnetic cell separation, drug targeting, and gene therapy. Optoelectron Adv Mater Rapid Commun 3:226–233Google Scholar
  14. 14.
    Häfeli UO, Gilmour K, Zhou A, Lee S, Hayden ME (2007) Modeling of magnetic bandages for drug targeting: Button vs. Halbach arrays. J Magn Magn Mater 311:323–329CrossRefGoogle Scholar
  15. 15.
    Furlani EP, Ng KC (2006) Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys Rev E 73(061919):1–10Google Scholar
  16. 16.
    Furlani EP (2001) Permanent magnet and electromechanical devices: materials, analysis and applications. Academic Press, New YorkGoogle Scholar
  17. 17.
    Takayasu M, Gerber R, Friedlaender FJ (1983) Magnetic separation of submicron particles. IEEE Trans Magn 9:2112–2114CrossRefGoogle Scholar
  18. 18.
    Jackson JD (2001) Classical electrodynamics. Wiley, New YorkGoogle Scholar
  19. 19.
    Meeker D Finite elements methods magnetics, V 4.2.
  20. 20.
    Kanger JS, Subramaniam V, van Driel R (2008) Intracellular manipulation of chromatin using magnetic nanoparticles. Chromosome Res 16:511–522CrossRefPubMedGoogle Scholar
  21. 21.
    Dames P, Gleich B, Flemmer A, Hajek K, Seidl N, Wiekhorst F, Eberbeck D, Bittmann I, Bergemann C, Weyh T, Trahms L, Rosenecker J, Rudolph C (2007) Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol 2:495–499CrossRefPubMedGoogle Scholar
  22. 22.
    Winkler M, Chichkine V, Behr KH, Geissel H, Eliseev S, Kalimov A, Li G, Munzenberg G, Plaß WR, Scheidenberger C, Wang Z, Weick H, Wollnik H (2003) Development and test of iron-free quadrupole lenses with high magnetic flux densities. Nucl Instr Meth Phys Res B 204:454–459CrossRefGoogle Scholar
  23. 23.
    Gerber R, Takayasu M, Friedlaender FJ (1983) Generalization of HGMS theory: the capture of ultra-fine particles. IEEE Trans Magn 19:2115–2117CrossRefGoogle Scholar
  24. 24.
    Cregg PJ, Murphy K, Mardinoglu A (2008) Calculation of nanoparticle capture efficiency in magnetic drug targeting. J Magn Magn Mater 320:3272–3275CrossRefGoogle Scholar
  25. 25.
    Cregg PJ, Murphy K, Mardinoglu A (2009) Inclusion of magnetic dipole–dipole and hydrodynamic interactions in implant-assisted magnetic drug targeting. J Magn Magn Mater 321:3893–3898CrossRefGoogle Scholar
  26. 26.
    Wilson RJ, Hu W, Fu CWP, Koh AL, Gaster RS, Earhart CM, Fu A, Heilshorn SC, Sinclair S, Wang SX (2009) Formation and properties of magnetic chains for 100 nm nanoparticles used in separations of molecules and cells. J Magn Magn Mater 321:1452–1458CrossRefPubMedGoogle Scholar
  27. 27.
    Hatch GP, Stelter RE (2001) Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems. J Magn Magn Mater 225:262–276CrossRefGoogle Scholar
  28. 28.
    Kopcansky P, Bano M, Repasan M, Potocova I, Timko M, Hrnciar V, Demjan S (2004) Magnetic targeted drug delivery using focused magnet. Magnetohydrodynamics 40:369–376Google Scholar
  29. 29.
    Rotariu O, Udrea LE, Strachan NJC, Baadescu V (2007) The guidance of magnetic colloids in simulated tissues for targeted drug delivery. J Optoelectron Adv Mater 9:942–945Google Scholar
  30. 30.
    Rotariu O, Udrea LE, Strachan NJC, Badescu V (2005) Targeting magnetic carrier particles in tumour microvasculature—a numerical study. J Optoelectron Adv Mater 7:3209–3218Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2010

Authors and Affiliations

  • Peter Babinec
    • 1
    Email author
  • Andrej Krafčík
    • 1
  • Melánia Babincová
    • 1
  • Joseph Rosenecker
    • 2
  1. 1.Department of Nuclear Physics and BiophysicsComenius UniversityBratislavaSlovakia
  2. 2.Department of PediatricsLudwig-Maximilians UniversityMunichGermany

Personalised recommendations