Advertisement

Stereotactic implantation of deep brain stimulation electrodes: a review of technical systems, methods and emerging tools

  • Simone Hemm
  • Karin WårdellEmail author
Review Article

Abstract

Deep brain stimulation (DBS) has become increasingly important for the treatment and relief of neurological disorders such as Parkinson’s disease, tremor, dystonia and psychiatric illness. As DBS implantations and any other stereotactic and functional surgical procedure require accurate, precise and safe targeting of the brain structure, the technical aids for preoperative planning, intervention and postoperative follow-up have become increasingly important. The aim of this paper was to give an overview, from a biomedical engineering perspective, of a typical implantation procedure and current supporting techniques. Furthermore, emerging technical aids not yet clinically established are presented. This includes the state-of-the-art of neuroimaging and navigation, patient-specific simulation of DBS electric field, optical methods for intracerebral guidance, movement pattern analysis, intraoperative data visualisation and trends related to new stimulation devices. As DBS surgery already today is an information technology intensive domain, an “intuitive visualisation” interface for improving management of these data in relation to surgery is suggested.

Keywords

Stereotactic and functional neurosurgery Deep brain stimulation Neuroimaging Safety 

Abbreviations

AC PC

Anterior and the posterior commissure

DBS

Deep brain stimulation

DTI

Diffusion tensor imaging

FEM

Finite element method

GPi

Globus pallidus internus

LDPM

Laser Doppler perfusion monitoring

MER

Microelectrode recording

PPN

Pedunculopontine nucleus

RF

Radiofrequency

SAR

Specific absorption rate

STN

Subthalamic nucleus

UPDRS

Unified Parkinson’s disease rating scale

Vim

Nucleus ventrointermedius of the thalamus

Zi

Zona incerta

Notes

Acknowledgments

This work was supported by the Swedish Foundation for Strategic Research (SSF), Swedish Research Council (VR) and Swedish Governmental Agency for Innovation Systems (VINNOVA) (group grant 311-2006-7661). Financial support has been obtained as well from the Förderverein Solothurn of the University of Applied Sciences Northwestern Switzerland.

References

  1. 1.
    Ackermans L, Temel Y, Visser-Vandewalle V (2008) Deep brain stimulation in Tourette’s syndrome. Neurotherapeutics 5(2):339–344PubMedCrossRefGoogle Scholar
  2. 2.
    Antonsson J, Eriksson O, Blomstedt P, Bergenheim AT, M IH, Richter J, Zsigmond P, Wårdell K (2008) Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation. J Neural Eng 5(2):185–190Google Scholar
  3. 3.
    Antonsson J, Eriksson O, Wårdell K (2003) In vivo reflection spectroscopy measurements in pig brain during stereotactic surgery. Advanced biomedical and clinical diagnostic systems, 1st edn. SPIE, San Jose, pp 242–250Google Scholar
  4. 4.
    Åström M, Johansson JD, Hariz MI, Eriksson O, Wårdell K (2006) The effect of cystic cavities on deep brain stimulation in the basal ganglia: a simulation-based study. J Neural Eng 3(2):132–138PubMedCrossRefGoogle Scholar
  5. 5.
    Åström M, Tripoliti E, Hariz IM, Zrinzo LU, Matinez-Torres I, Limousin P, Wårdell K (2010) Patient-specific model-based investigation of speech intelligibility and movement during deep brain stimulation. Stereotact Funct Neurosurg 88(4):224–233Google Scholar
  6. 6.
    Åström M, Tripoliti E, Zrinzo L, Martinez-Torres I, Limousin P, Hariz M, Wårdell K (2008) Voltage steering to control deep brain stimulation-induced speech deficits. Acta Neurochir 150:953–954Google Scholar
  7. 7.
    Åström M, Zrinzo LU, Tisch S, Tripoliti E, Hariz MI, Wårdell K (2009) Method for patient-specific finite element modeling and simulation of deep brain stimulation. Med Biol Eng Comput 47(1):21–28PubMedCrossRefGoogle Scholar
  8. 8.
    Bakker M, Esselink RA, Munneke M, Limousin-Dowsey P, Speelman HD, Bloem BR (2004) Effects of stereotactic neurosurgery on postural instability and gait in Parkinson’s disease. Mov Disord 19(9):1092–1099PubMedCrossRefGoogle Scholar
  9. 9.
    Balachandran R, Mitchell JE, Dawant BM, Fitzpatrick JM (2009) Accuracy evaluation of microTargeting Platforms for deep-brain stimulation using virtual targets. IEEE Trans Biomed Eng 56(1):37–44PubMedCrossRefGoogle Scholar
  10. 10.
    Balachandran R, Welch EB, Dawant B, Fitzpatrick J (2010) Effect of MR distortion on targeting for deep-brain stimulation. IEEE Trans Biomed Eng (in press)Google Scholar
  11. 11.
    Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8(1):67–81PubMedCrossRefGoogle Scholar
  12. 12.
    Beuter A, Edwards R (2002) Kinetic tremor during tracking movements in patients with Parkinson’s disease. Parkinsonism Relat Disord 8(5):361–368PubMedCrossRefGoogle Scholar
  13. 13.
    Birdno MJ, Kuncel AM, Dorval AD, Turner DA, Grill WM (2008) Tremor varies as a function of the temporal regularity of deep brain stimulation. Neuroreport 19(5):599–602PubMedCrossRefGoogle Scholar
  14. 14.
    Bjartmarz H, Rehncrona S (2007) Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation. Stereotact Funct Neurosurg 85(5):235–242PubMedCrossRefGoogle Scholar
  15. 15.
    Blahak C, Wohrle JC, Capelle HH, Bazner H, Grips E, Weigel R, Hennerici MG, Krauss JK (2007) Tremor reduction by subthalamic nucleus stimulation and medication in advanced Parkinson’s disease. J Neurol 254(2):169–178PubMedCrossRefGoogle Scholar
  16. 16.
    Blomstedt P, Hariz GM, Hariz MI (2006) Pallidotomy versus pallidal stimulation. Parkinsonism Relat Disord 12(5):296–301PubMedCrossRefGoogle Scholar
  17. 17.
    Burchiel KJ, Nguyen TT, Coombs BD, Szumoski J (1996) MRI distortion and stereotactic neurosurgery using the Cosman-Roberts-Wells and Leksell frames. Stereotact Funct Neurosurg 66(1–3):123–136PubMedCrossRefGoogle Scholar
  18. 18.
    Butson CR, Cooper SE, Henderson JM, McIntyre CC (2007) Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34(2):661–670PubMedCrossRefGoogle Scholar
  19. 19.
    Butson CR, McIntyre CC (2008) Current steering to control the volume of tissue activated during deep brain stimulation. Brain Stimulat 1(1):7–15PubMedCrossRefGoogle Scholar
  20. 20.
    Castner JE, Copland DA, Silburn PA, Coyne TJ, Sinclair F, Chenery HJ (2008) Subthalamic stimulation affects homophone meaning generation in Parkinson’s disease. J Int Neuropsychol Soc 14(5):890–894PubMedCrossRefGoogle Scholar
  21. 21.
    Cho ZH, Min HK, Oh SH, Han JY, Park CW, Chi JG, Kim YB, Paek SH, Lozano AM, Lee KH (2010) Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging. J Neurosurg (in press)Google Scholar
  22. 22.
    Coffey RJ (2009) Deep brain stimulation devices: a brief technical history and review. Artif Organs 33(3):208–220PubMedCrossRefGoogle Scholar
  23. 23.
    Cosyns P, Gabriels L, Nuttin B (2003) Deep brain stimulation in treatment refractory obsessive compulsive disorder. Verh K Acad Geneeskd Belg 65(6):385–399PubMedGoogle Scholar
  24. 24.
    Coubes P, Roubertie A, Vayssiere N, Hemm S, Echenne B (2000) Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus. Lancet 355(9222):2220–2221PubMedCrossRefGoogle Scholar
  25. 25.
    Coubes P, Vayssiere N, El Fertit H, Hemm S, Cif L, Kienlen J, Bonafe A, Frerebeau P (2002) Deep brain stimulation for dystonia. Surgical technique. Stereotact Funct Neurosurg 78(3-4):183–191PubMedCrossRefGoogle Scholar
  26. 26.
    D’Haese PF, Cetinkaya E, Konrad PE, Kao C, Dawant BM (2005) Computer-aided placement of deep brain stimulators: from planning to intraoperative guidance. IEEE Trans Med Imaging 24(11):1469–1478PubMedCrossRefGoogle Scholar
  27. 27.
    De Salles AA, Frighetto L, Behnke E, Sinha S, Tseng L, Torres R, Lee M, Cabatan-Awang C, Frysinger R (2004) Functional neurosurgery in the MRI environment. Minim Invasive Neurosurg 47(5):284–289PubMedCrossRefGoogle Scholar
  28. 28.
    Derost PP, Ouchchane L, Morand D, Ulla M, Llorca PM, Barget M, Debilly B, Lemaire JJ, Durif F (2007) Is DBS-STN appropriate to treat severe Parkinson disease in an elderly population? Neurology 68(17):1345–1355PubMedCrossRefGoogle Scholar
  29. 29.
    Dostrovsky JO, Lozano AM (2002) Mechanisms of deep brain stimulation. Mov Disord 17(Suppl 3):S63–S68PubMedCrossRefGoogle Scholar
  30. 30.
    Duffner F, Schiffbauer H, Breit S, Friese S, Freudenstein D (2002) Relevance of image fusion for target point determination in functional neurosurgery. Acta Neurochir 144(5):445–451CrossRefGoogle Scholar
  31. 31.
    Dunnewold RJ, Jacobi CE, van Hilten JJ (1997) Quantitative assessment of bradykinesia in patients with Parkinson’s disease. J Neurosci Methods 74(1):107–112PubMedCrossRefGoogle Scholar
  32. 32.
    Eljamel MS, Tulley M, Spillane K (2007) A simple stereotactic method for frameless deep brain stimulation. Stereotact Funct Neurosurg 85(1):6–10PubMedCrossRefGoogle Scholar
  33. 33.
    Fahn S, Elton RL (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Goldstein M (eds) Recent developments in Parkinson’s disease. Macmillian, New York, pp 153–163Google Scholar
  34. 34.
    Finnis KW, Starreveld YP, Parrent AG, Sadikot AF, Peters TM (2003) Three-dimensional database of subcortical electrophysiology for image-guided stereotactic functional neurosurgery. IEEE Trans Med Imaging 22(1):93–104PubMedCrossRefGoogle Scholar
  35. 35.
    Fukuda M, Barnes A, Simon ES, Holmes A, Dhawan V, Giladi N, Fodstad H, Ma Y, Eidelberg D (2004) Thalamic stimulation for parkinsonian tremor: correlation between regional cerebral blood flow and physiological tremor characteristics. Neuroimage 21(2):608–615PubMedCrossRefGoogle Scholar
  36. 36.
    Gildenberg PL, Krause JK (2009) The history of stereotactic and functional neurosurgery. In: Lozano AM, Gildenberg PL, Tasker RR (eds). Textbook of stereotactic and functional neurosurgery, vol 1. Springer, Berlin, pp 3–33Google Scholar
  37. 37.
    Giller CA, Liu H, German DC, Kashyap D, Dewey RB (2009) A stereotactic near-infrared probe for localization during functional neurosurgical procedures: further experience. J Neurosurg 110(2):263–273PubMedCrossRefGoogle Scholar
  38. 38.
    Giller CA, Liu HL, Gurnani P, Victor S, Yasdani U, German DC (2003) Validation of a near-infrared probe for detection of thin intracranial white matter structures. J Neurosurg 98:1299–1306PubMedCrossRefGoogle Scholar
  39. 39.
    Gour J, Edwards R, Lemieux S, Ghassemi M, Jog M, Duval C (2007) Movement patterns of peak-dose levodopa-induced dyskinesias in patients with Parkinson’s disease. Brain Res Bull 74(1–3):66–74PubMedCrossRefGoogle Scholar
  40. 40.
    Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324(5925):354–359PubMedCrossRefGoogle Scholar
  41. 41.
    Greenberg BD, Rauch SL, Haber SN (2009) Invasive circuitry-based neurotherapeutics: stereotactic ablation and deep brain stimulation for OCD. Neuropsychopharmacology 35(1):317–336CrossRefGoogle Scholar
  42. 42.
    Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL (2006) Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov Disord 21(S14):S259–S283PubMedCrossRefGoogle Scholar
  43. 43.
    Guo T, Finnis KW, Parrent AG, Peters TM (2006) Visualization and navigation system development and application for stereotactic deep-brain neurosurgeries. Comput Aided Surg 11(5):231–239PubMedCrossRefGoogle Scholar
  44. 44.
    Guo T, Parrent AG, Peters TM (2007) Surgical targeting accuracy analysis of six methods for subthalamic nucleus deep brain stimulation. Comput Aided Surg 12(6):325–334PubMedCrossRefGoogle Scholar
  45. 45.
    Gutman DA, Holtzheimer PE, Behrens TE, Johansen-Berg H, Mayberg HS (2009) A tractography analysis of two deep brain stimulation white matter targets for depression. Biol Psychiatry 65(4):276–282PubMedCrossRefGoogle Scholar
  46. 46.
    Halpern CH, Danish SF, Baltuch GH, Jaggi JL (2008) Brain shift during deep brain stimulation surgery for Parkinson’s disease. Stereotact Funct Neurosurg 86(1):37–43PubMedCrossRefGoogle Scholar
  47. 47.
    Hariz MI (2002) Safety and risk of microelectrode recording in surgery for movement disorders. Stereotact Funct Neurosurg 78(3–4):146–157PubMedCrossRefGoogle Scholar
  48. 48.
    Hariz MI (2003) From functional neurosurgery to “interventional” neurology: survey of publications on thalamotomy, pallidotomy, deep brain stimulation for Parkinson’s disease from 1966 to 2001. Mov Disord 18(8):845–853PubMedCrossRefGoogle Scholar
  49. 49.
    Hariz MI, Krack P, Melvill R, Jorgensen JV, Hamel W, Hirabayashi H, Lenders M, Wesslen N, Tengvar M, Yousry TA (2003) A quick and universal method for stereotactic visualization of the subthalamic nucleus before and after implantation of deep brain stimulation electrodes. Stereotact Funct Neurosurg 80(1–4):96–101PubMedCrossRefGoogle Scholar
  50. 50.
    Hariz MI, Rehncrona S, Quinn NP, Speelman JD, Wensing C (2008) Multicenter study on deep brain stimulation in Parkinson’s disease: an independent assessment of reported adverse events at 4 years. Mov Disord 23(3):416–421PubMedCrossRefGoogle Scholar
  51. 51.
    Hass CJ, DE Waddell, Wolf SL, Juncos JL, Gregor RJ (2008) Gait initiation in older adults with postural instability. Clin Biomech 23(6):743–753CrossRefGoogle Scholar
  52. 52.
    Hauptmann C, Roulet JC, Niederhauser JJ, Doll W, Kirlangic ME, Lysyansky B, Krachkovskyi V, Bhatti MA, Barnikol UB, Sasse L, Buhrle CP, Speckmann EJ, Gotz M, Sturm V, Freund HJ, Schnell U, Tass PA (2009) External trial deep brain stimulation device for the application of desynchronizing stimulation techniques. J Neural Eng 6(6):66003CrossRefGoogle Scholar
  53. 53.
    Hemm S, Caire F, Coste J, Vassal F, Nuti C, Derost P, Ouchchane L, Sarry L, Durif F, Lemaire JJ (2008) Postoperative control in deep brain stimulation of the subthalamic region: the contact membership concept. Int J CARS. doi: 10.1007/s11548-008-0152-6
  54. 54.
    Hemm S, Mennessier G, Vayssiere N, Cif L, El Fertit H, Coubes P (2005) Deep brain stimulation in movement disorders: stereotactic coregistration of two-dimensional electrical field modeling and magnetic resonance imaging. J Neurosurg 103(6):949–955PubMedCrossRefGoogle Scholar
  55. 55.
    Herzog J, Hamel W, Wenzelburger R, Potter M, Pinsker MO, Bartussek J, Morsnowski A, Steigerwald F, Deuschl G, Volkmann J (2007) Kinematic analysis of thalamic versus subthalamic neurostimulation in postural and intention tremor. Brain 130(Pt 6):1608–1625PubMedCrossRefGoogle Scholar
  56. 56.
    Heuer GG, Zaghloul KA, Jaggi JL, Baltuch GH (2008) Use of an integrated platform system in the placement of deep brain stimulators. Neurosurgery 62(3 Suppl 1):245–247; discussion 247–248Google Scholar
  57. 57.
    Hirabayashi H, Tengvar M, Hariz MI (2002) Stereotactic imaging of the pallidal target. Mov Disord 17(Suppl 3):S130–S134PubMedCrossRefGoogle Scholar
  58. 58.
    Hoff JI, Plas Vd, Wagemans EAH, van Hilten JJ (2001) Accelerometric assessment of levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord 16(1):58–61PubMedCrossRefGoogle Scholar
  59. 59.
    Hoff JI, van der Meer V, van Hilten JJ (2004) Accuracy of objective ambulatory accelerometry in detecting motor complications in patients with Parkinson disease. Clin Neuropharmacol 27(2):53–57PubMedCrossRefGoogle Scholar
  60. 60.
    Holloway KL, Gaede SE, Starr PA, Rosenow JM, Ramakrishnan V, Henderson JM (2005) Frameless stereotaxy using bone fiducial markers for deep brain stimulation. J Neurosurg 103(3):404–413PubMedCrossRefGoogle Scholar
  61. 61.
    Hunsche S, Sauner D, Maarouf M, Poggenborg J, Lackner K, Sturm V, Treuer H (2009) Intraoperative X-ray detection and MRI-based quantification of brain shift effects subsequent to implantation of the first electrode in bilateral implantation of deep brain stimulation electrodes. Stereotact Funct Neurosurg 87(5):322–329PubMedCrossRefGoogle Scholar
  62. 62.
    Johansson JD, Blomstedt P, Haj-Hosseini N, Bergenheim AT, Eriksson O, Wårdell K (2009) Combined diffuse light reflectance and electrical impedance measurements as a navigation aid in deep brain surgery. Stereotact Funct Neurosurg 87(2):105–113PubMedCrossRefGoogle Scholar
  63. 63.
    Johansson JD, Fredriksson I, Wårdell K, Eriksson O (2009) Simulation of reflected light intensity changes during navigation and radio-frequency lesioning in the brain. J Biomed Opt 14(4):044040PubMedCrossRefGoogle Scholar
  64. 64.
    Journee HL, Postma AA, Staal MJ (2007) Intraoperative neurophysiological assessment of disabling symptoms in DBS surgery. Neurophysiol Clin 37(6):467–475PubMedCrossRefGoogle Scholar
  65. 65.
    Keijsers NL, Horstink MW, Gielen SC (2006) Ambulatory motor assessment in Parkinson’s disease. Mov Disord 21(1):34–44PubMedCrossRefGoogle Scholar
  66. 66.
    Kerr G, Morrison S, Silburn P (2008) Coupling between limb tremor and postural sway in Parkinson’s disease. Mov Disord 23(3):386–394PubMedCrossRefGoogle Scholar
  67. 67.
    Khan MF, Mewes K, Gross RE, Skrinjar O (2008) Assessment of brain shift related to deep brain stimulation surgery. Stereotact Funct Neurosurg 86(1):44–53PubMedCrossRefGoogle Scholar
  68. 68.
    Klerk DGM, Vugt JPP, Geelen JAG, Heida T (2009) A long-term monitor including activity classification for motor assessment in Parkinson’s disease patients. In: 4th European conference of the International Federation for Medical and Biological Engineering, pp 1706–1709Google Scholar
  69. 69.
    Koop MM, Andrzejewski A, Hill BC, Heit G, Bronte-Stewart HM (2006) Improvement in a quantitative measure of bradykinesia after microelectrode recording in patients with Parkinson’s disease during deep brain stimulation surgery. Mov Disord 21(5):673–678PubMedCrossRefGoogle Scholar
  70. 70.
    Krauss JK (2009) The Riechert/Mundiger stereotactic apparatus. In: Lozano AM, Gildenberg PL, Tasker RR (eds) Textbook of stereotactic and functional neurosurgery, vol 1. Springer, Berlin, pp 488–494Google Scholar
  71. 71.
    Kumru H, Summerfield C, Valldeoriola F, Valls-Sole J (2004) Effects of subthalamic nucleus stimulation on characteristics of EMG activity underlying reaction time in Parkinson’s disease. Mov Disord 19(1):94–100PubMedCrossRefGoogle Scholar
  72. 72.
    Laitinen L, Johansson GG, Sipponen P (1966) Impedance and phase angle as a locating method in human stereotaxic surgery. J Neurosurg 25(6):628–633PubMedCrossRefGoogle Scholar
  73. 73.
    Laitinen LV, Bergenheim AT, Hariz MI (1992) Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 76(1):53–61PubMedCrossRefGoogle Scholar
  74. 74.
    Lane EL, Handley OJ, Rosser AE, Dunnett SB (2008) Potential cellular and regenerative approaches for the treatment of Parkinson’s disease. Neuropsychiatr Dis Treat 4(5):835–845PubMedGoogle Scholar
  75. 75.
    Larson PS (2008) Technical alternatives in performiing deep brain stimulator implantation. In: Tarsy D, Vitek JL, Okun MS (eds) Current clinical neurology: deep brain stimulation in neurological and psychiatric disorders. Humana Press, pp 12Google Scholar
  76. 76.
    Larson PS, Richardson RM, Starr PA, Martin AJ (2008) Magnetic resonance imaging of implanted deep brain stimulators: experience in a large series. Stereotact Funct Neurosurg 86(2):92–100PubMedCrossRefGoogle Scholar
  77. 77.
    Larsson M, Steenbergen W, Strömberg T (2002) Influence of optical properties and fiber separation on laser Doppler flowmetry. J Biomed Opt 7(2):236–243PubMedCrossRefGoogle Scholar
  78. 78.
    Legros A, Diakonova N, Cif L, Hemm S, Vayssiere N, Coubes P, Beuter A (2004) Accelerometric measurement of involuntary movements during pallidal deep brain stimulation of patients with generalized dystonia. Brain Res Bull 64(4):363–369PubMedCrossRefGoogle Scholar
  79. 79.
    Lemaire JJ, Coste J, Ouchchane L, Hemm S, Derost P, Ulla M, Siadoux S, Gabrillargues J, Durif F, Chazal J (2007) MRI anatomical mapping and direct stereotactic targeting in the subthalamic region: functional and anatomical correspondence in Parkinson’s disease. Int J CARS 2:75–85CrossRefGoogle Scholar
  80. 80.
    Leone M, Proietti Cecchini A, Franzini A, Broggi G, Cortelli P, Montagna P, May A, Juergens T, Cordella R, Carella F, Bussone G (2008) Lessons from 8 years’ experience of hypothalamic stimulation in cluster headache. Cephalalgia 28(7):787–797PubMedCrossRefGoogle Scholar
  81. 81.
    Li QH, Zamorano L, Pandya A, Perez R, Gong J, Diaz F (2002) The application accuracy of the NeuroMate robot—a quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg 7(2):90–98PubMedGoogle Scholar
  82. 82.
    Liu Y, Postupna N, Falkenberg J, Anderson ME (2008) High frequency deep brain stimulation: what are the therapeutic mechanisms? Neurosci Biobehav Rev 32(3):343–351PubMedCrossRefGoogle Scholar
  83. 83.
    Lujan JL, Noecker AM, Butson CR, Cooper SE, Walter BL, Vitek JL, McIntyre CC (2009) Automated 3-dimensional brain atlas fitting to microelectrode recordings from deep brain stimulation surgeries. Stereotact Funct Neurosurg 87(4):229–240PubMedCrossRefGoogle Scholar
  84. 84.
    Lunsford LD, Kondziolka D, Leksell D (2009) Leksell stereotactic apparatus. In: Lozano AM, Gildenberg PL, Tasker RR (eds) Textbook of stereotactic and functional neurosurgery, vol 1. Springer, Berlin, pp 470–485Google Scholar
  85. 85.
    Machado A, Rezai AR, Kopell BH, Gross RE, Sharan AD, Benabid AL (2006) Deep brain stimulation for Parkinson’s disease: surgical technique and perioperative management. Mov Disord 21(S14):S247–S258PubMedCrossRefGoogle Scholar
  86. 86.
    Maks CB, Butson CR, Walter BL, Vitek JL, McIntyre CC (2009) Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes. J Neurol Neurosurg Psychiatry 80(6):659–666PubMedCrossRefGoogle Scholar
  87. 87.
    Martin AJ, Larson PS, Ostrem JL, Starr PA (2008) Interventional magnetic resonance guidance of deep brain stimulator implantation for Parkinson’s disease. Top Magn Reson Imaging 19(4):213–221CrossRefGoogle Scholar
  88. 88.
    Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660PubMedCrossRefGoogle Scholar
  89. 89.
    McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL (2004) Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115(3):589–595PubMedCrossRefGoogle Scholar
  90. 90.
    McIntyre CC, Savasta M, Walter BL, Vitek JL (2004) How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol 21(1):40–50PubMedCrossRefGoogle Scholar
  91. 91.
    Medtronic (2010) Medtronic DBS MRI guidelines for movement disorders. Medtronic CorporationGoogle Scholar
  92. 92.
    Mikell CB, McKhann GM, Segal S, McGovern RA, Wallenstein MB, Moore H (2009) The hippocampus and nucleus accumbens as potential therapeutic targets for neurosurgical intervention in schizophrenia. Stereotact Funct Neurosurg 87(4):256–265PubMedCrossRefGoogle Scholar
  93. 93.
    Mikos A, Bowers D, Noecker AM, McIntyre CC, Won M, Chaturvedi A, Foote KD, Okun MS (2010) Patient-specific analysis of the relationship between the volume of tissue activated during DBS and verbal fluency. Neuroimage (in press)Google Scholar
  94. 94.
    Miocinovic S, Noecker AM, Maks CB, Butson CR, McIntyre CC (2007) Cicerone: stereotactic neurophysiological recording and deep brain stimulation electrode placement software system. Acta Neurochir Suppl 97(Pt 2):561–567PubMedCrossRefGoogle Scholar
  95. 95.
    Miyagi Y, Okamoto T, Morioka T, Tobimatsu S, Nakanishi Y, Aihara K, Hashiguchi K, Murakami N, Yoshida F, Samura K, Nagata S, Sasaki T (2009) Spectral analysis of field potential recordings by deep brain stimulation electrode for localization of subthalamic nucleus in patients with Parkinson’s disease. Stereotact Funct Neurosurg 87(4):211–218PubMedCrossRefGoogle Scholar
  96. 96.
    Morel A (2007) Stereotactic atlas of the human thalamus and basal ganglia. Informa Healthcare USA IncGoogle Scholar
  97. 97.
    Moringlane JR, Fuss G, Becker G (2005) Peroperative transcranial sonography for electrode placement into the targeted subthalamic nucleus of patients with Parkinson disease: technical note. Surg Neurol 63(1):66–69PubMedCrossRefGoogle Scholar
  98. 98.
    Nazzaro JM, Lyons KE, Wetzel LH, Pahwa R (2010) Use of brain MRI after deep brain stimulation hardware implantation. Int J Neurosci 120(3):176–183PubMedCrossRefGoogle Scholar
  99. 99.
    Nowinski WL, Thirunavuukarasuu M, Benabid AL (2005) The Cerefy Clinical BrainAtlas: enhanced edition with surgical planning and intraoperative support. CD-ROMGoogle Scholar
  100. 100.
    Owen SL, Heath J, Kringelbach ML, Stein JF, Aziz TZ (2007) Preoperative DTI and probabilistic tractography in an amputee with deep brain stimulation for lower limb stump pain. Br J Neurosurg 21(5):485–490PubMedCrossRefGoogle Scholar
  101. 101.
    Palur RS, Berk C, Schulzer M, Honey CR (2002) A metaanalysis comparing the results of pallidotomy performed using microelectrode recording or macroelectrode stimulation. J Neurosurg 96(6):1058–1062PubMedCrossRefGoogle Scholar
  102. 102.
    Panescu D (2008) Emerging technologies. Implantable neurostimulation devices. IEEE Eng Med Biol Mag 27(5):100–105 113PubMedCrossRefGoogle Scholar
  103. 103.
    Papapetropoulos S, Gallo BV, Guevara A, Singer C, Mitsi G, Lyssikatos C, Jagid JR (2009) Objective tremor registration during DBS surgery for essential tremor. Clin Neurol Neurosurg 111(4):376–379PubMedCrossRefGoogle Scholar
  104. 104.
    Papapetropoulos S, Jagid JR, Sengun C, Singer C, Gallo BV (2008) Objective monitoring of tremor and bradykinesia during DBS surgery for Parkinson disease. Neurology 70(15):1244–1249PubMedCrossRefGoogle Scholar
  105. 105.
    Patel NK, Khan S, Gill SS (2008) Comparison of atlas- and magnetic-resonance-imaging-based stereotactic targeting of the subthalamic nucleus in the surgical treatment of Parkinson’s disease. Stereotact Funct Neurosurg 86(3):153–161PubMedCrossRefGoogle Scholar
  106. 106.
    Pereira EA, Muthusamy KA, De Pennington N, Joint CA, Aziz TZ (2008) Deep brain stimulation of the pedunculopontine nucleus in Parkinson’s disease. Preliminary experience at Oxford. Br J Neurosurg 22(Suppl 1):S41–S44PubMedCrossRefGoogle Scholar
  107. 107.
    Pinsker MO, Volkmann J, Falk D, Herzog J, Alfke K, Steigerwald F, Deuschl G, Mehdorn M (2008) Electrode implantation for deep brain stimulation in dystonia: a fast spin-echo inversion-recovery sequence technique for direct stereotactic targeting of the GPI. Zentralbl Neurochir 69(2):71–75PubMedCrossRefGoogle Scholar
  108. 108.
    Pollo C, Villemure JG, Vingerhoets F, Ghika J, Maeder P, Meuli R (2004) Magnetic resonance artifact induced by the electrode Activa 3389: an in vitro and in vivo study. Acta Neurochir 146(2):161–164CrossRefGoogle Scholar
  109. 109.
    Qian Z, Sunder S, Yeqing G, Giller C, Liu H (2003) “Look-ahead distance” of a fiber probe used to assist neurosurgery: Phanton and Monte Carlo study. Opt Express 11:1844–1855PubMedCrossRefGoogle Scholar
  110. 110.
    Quinones-Hinojosa A, Ware ML, Sanai N, McDermott MW (2006) Assessment of image guided accuracy in a skull model: comparison of frameless stereotaxy techniques vs. frame-based localization. J Neurooncol 76(1):65–70PubMedCrossRefGoogle Scholar
  111. 111.
    Rezai AR, Kopell BH, Gross RE, Vitek JL, Sharan AD, Limousin P, Benabid AL (2006) Deep brain stimulation for Parkinson’s disease: surgical issues. Mov Disord 21(Suppl 14):S197–S218PubMedCrossRefGoogle Scholar
  112. 112.
    Schrader B, Hamel W, Weinert D, Mehdorn HM (2002) Documentation of electrode localization. Mov Disord 17(Suppl 3):S167–S174PubMedCrossRefGoogle Scholar
  113. 113.
    Sedrak M, Gorgulho A, De Salles AF, Frew A, Behnke E, Ishida W, Klochkov T, Malkasian D (2008) The role of modern imaging modalities on deep brain stimulation targeting for mental illness. Acta Neurochir Suppl 101:3–7PubMedCrossRefGoogle Scholar
  114. 114.
    St.JudeMedical (2009) Deep brain stimulation lead and extension kits. St. Jude Medical CompanyGoogle Scholar
  115. 115.
    Starr PA, Christine CW, Theodosopoulos PV, Lindsey N, Byrd D, Mosley A, Marks WJ Jr (2002) Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 97(2):370–387PubMedCrossRefGoogle Scholar
  116. 116.
    Starr PA, Martin AJ, Larson PS (2009) Implantation of deep brain stimulator electrodes using interventional MRI. Neurosurg Clin N Am 20(2):193–203PubMedCrossRefGoogle Scholar
  117. 117.
    Sturman MM, Vaillancourt DE, Metman LV, Sierens DK, Bakay RA, Corcos DM (2007) Deep brain stimulation and medication for parkinsonian tremor during secondary tasks. Mov Disord 22(8):1157–1163PubMedCrossRefGoogle Scholar
  118. 118.
    Timmermann L, Braun M, Groiss S, Wojtecki L, Ostrowski S, Krause H, Pollok B, Sudmeyer M, Ploner M, Gross J, Maarouf M, Voges J, Sturm V, Schnitzler A (2008) Differential effects of levodopa and subthalamic nucleus deep brain stimulation on bradykinesia in Parkinson’s disease. Mov Disord 23(2):218–227PubMedCrossRefGoogle Scholar
  119. 119.
    Toda H, Sawamoto N, Hanakawa T, Saiki H, Matsumoto S, Okumura R, Ishikawa M, Fukuyama H, Hashimoto N (2009) A novel composite targeting method using high-field magnetic resonance imaging for subthalamic nucleus deep brain stimulation. J Neurosurg 111(4):737–745PubMedCrossRefGoogle Scholar
  120. 120.
    Vasques X, Cif L, Hess O, Gavarini S, Mennessier G, Coubes P (2009) Stereotactic model of the electrical distribution within the internal globus pallidus during deep brain stimulation. J Comput Neurosci 26(1):109–118PubMedCrossRefGoogle Scholar
  121. 121.
    Vayssiere N, Hemm S, Cif L, Picot MC, Diakonova N, El Fertit H, Frerebeau P, Coubes P (2002) Comparison of atlas- and magnetic resonance imaging-based stereotactic targeting of the globus pallidus internus in the performance of deep brain stimulation for treatment of dystonia. J Neurosurg 96(4):673–679PubMedCrossRefGoogle Scholar
  122. 122.
    Vayssiere N, Hemm S, Zanca M, Picot MC, Bonafe A, Cif L, Frerebeau P, Coubes P (2000) Magnetic resonance imaging stereotactic target localization for deep brain stimulation in dystonic children. J Neurosurg 93(5):784–790PubMedCrossRefGoogle Scholar
  123. 123.
    Voges J, Kiening K, Krauss JK, Nikkhah G, Vesper J (2009) Neurosurgical standards in deep brain stimulation: consensus recommendations of the German Deep Brain Stimulation Association. Nervenarzt 80(6):666–672PubMedCrossRefGoogle Scholar
  124. 124.
    Vonck K, Boon P, Van Roost D (2007) Anatomical and physiological basis and mechanism of action of neurostimulation for epilepsy. Acta Neurochir Suppl 97(Pt 2):321–328PubMedCrossRefGoogle Scholar
  125. 125.
    Walter U, Wolters A, Wittstock M, Benecke R, Schroeder HW, Muller JU (2009) Deep brain stimulation in dystonia: sonographic monitoring of electrode placement into the globus pallidus internus. Mov Disord 24(10):1538–1541PubMedCrossRefGoogle Scholar
  126. 126.
    Ward HE, Hwynn N, Okun MS (2010) Update on deep brain stimulation for neuropsychiatric disorders. Neurobiol Dis 38(3):346–353Google Scholar
  127. 127.
    Wårdell K, Blomstedt P, Richter J, Antonsson J, Eriksson O, Zsigmond P, Bergenheim AT, Hariz MI (2007) Intracerebral microvascular measurements during deep brain stimulation implantation using laser Doppler perfusion monitoring. Stereotact Funct Neurosurg 85(6):279–286PubMedCrossRefGoogle Scholar
  128. 128.
    Wårdell K, Johansson J, Richter J, Blomstedt P (2009) Optical measurements for guidance during deep brain stimulation surgery. In: Medical physics and biomedical engineering world congress, München, IFMBE Proceedings, pp 516–517Google Scholar
  129. 129.
    Witt K, Daniels C, Reiff J, Krack P, Volkmann J, Pinsker MO, Krause M, Tronnier V, Kloss M, Schnitzler A, Wojtecki L, Botzel K, Danek A, Hilker R, Sturm V, Kupsch A, Karner E, Deuschl G (2008) Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet Neurol 7(7):605–614PubMedCrossRefGoogle Scholar
  130. 130.
    Yousif N, Bayford R, Bain PG, Liu X (2007) The peri-electrode space is a significant element of the electrode-brain interface in deep brain stimulation: a computational study. Brain Res Bull 74(5):361–368PubMedCrossRefGoogle Scholar
  131. 131.
    Yousif N, Liu X (2007) Modeling the current distribution across the depth electrode-brain interface in deep brain stimulation. Expert Rev Med Devices 4(5):623–631PubMedCrossRefGoogle Scholar
  132. 132.
    Zrinzo L (2010) The role of imaging in the surgical treatment of movement disorders. Neuroimaging Clin N Am 20(1):125–140PubMedCrossRefGoogle Scholar
  133. 133.
    Zrinzo L, Hariz M (2008) Impedance recording in functional neurosurgery. In: Gildenberg PL, Lozano AM, Tasker R (eds) Textbook of stereotactic and functional neurosurgeryGoogle Scholar
  134. 134.
    Zylka W, Sabczynski J (1999) Effect of localization devices and registration methods on the accuracy of stereotactic frame systems predicted by the Gaussian approach. Comput Aided Surg 4(2):77–86PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2010

Authors and Affiliations

  1. 1.University of Applied Sciences Northwestern SwitzerlandInstitute for Medical and Analytical TechnologiesMuttenzSwitzerland
  2. 2.Department of Biomedical EngineeringLinköping UniversityLinköpingSweden

Personalised recommendations