Medical & Biological Engineering & Computing

, Volume 48, Issue 8, pp 765–772 | Cite as

Movement analysis by accelerometry of newborns and infants for the early detection of movement disorders due to infantile cerebral palsy

  • Franziska Heinze
  • Katharina Hesels
  • Nico Breitbach-Faller
  • Thomas Schmitz-Rode
  • Catherine Disselhorst-Klug
Original Article


So far, developed diagnostic strategies for the early detection of movement disorders due to infantile cerebral palsy (ICP) in newborns are not easily applicable in clinical settings. They are either difficult to acquire or they are too expensive to be established in pediatric clinics and are not sufficiently usable to be integrated into daily routine. The aim of this study therefore was to develop a methodology that allows the objective diagnosis of developing movement disorders in newborns due to ICP. It should be applicable to pediatric offices and should easily integrate in daily routine. To achieve this, a simple to use and low-cost system based on accelerometers was developed to evaluate the newborn’s movement. Afterward, a classificator based on a decision tree algorithm was implemented to differentiate between healthy and pathological data in order to propose the most likely diagnosis. The developed methodology was validated in a clinical study with 19 healthy and 4 affected subjects that were evaluated at the first, third and fifths month after birth (corrected age). The overall detection rate of the developed methodology reached between 88 and 92% for all evaluated measurements. The developed methodology is simple to use, therefore is applicable for the objective diagnosis of developing movement disorders in newborns due to ICP and can be established in pediatric offices for use in daily routine.


Accelerometry Movement analysis Infantile cerebral palsy Diagnosis Movement disorders 



The authors gratefully acknowledge the financial support provided by the German Research Council (Deutsche Forschungsgemeinschaft DFG, DI 596/5-1).


  1. 1.
    Adde L, Rygg M, Lossius K, Oberg GK, Stoen R (2007) General movement assessment: predicting cerebral palsy in clinical practise. Early Hum Dev 83:13–18CrossRefPubMedGoogle Scholar
  2. 2.
    Albert AE, Gardner LA (1967) Stochastic approximation and nonlinear regression. MIT Press, Cambridge, MassGoogle Scholar
  3. 3.
    Aminian K, Robert P, Buchser EE, Rutschmann B, Hayoz D, Depairon M (1999) Physical activity monitoring based on accelerometry: validation and comparison with video observation. Med Biol Eng Comput 37:304–308CrossRefPubMedGoogle Scholar
  4. 4.
    Ancel PY, Livinec F, Larroque B, Marret S, Arnaud C, Pierrat V, Dehan M, N’Guyen S, Escande B, Burguet A, Thiriez G, Picaud JC, André M, Bréart G, Kaminski M, EPIPAGE Study Group (2006) Cerebral palsy among very preterm children in relation to gestational age and neonatal ultrasound abnormalities: the EPIPAGE Cohort Study. Pediatrics 117:828–835CrossRefPubMedGoogle Scholar
  5. 5.
    Aßmann B, Romano MC, Thiel M, Niemitz C (2007) Hierarchical organization of a reference system in newborn spontaneous movements. Infant Behav Dev 30:568–586CrossRefPubMedGoogle Scholar
  6. 6.
    Berge PR, Adde L, Espinosa G, Stavdahl Ø (2008) ENIGMA––enhanced interactive general movement assessment. Expert Syst Appl 34:2664–2672CrossRefGoogle Scholar
  7. 7.
    Blauw-Hospers CH, Hadders-Algra M (2005) A systematic review of the effects of early intervention on motor development. Dev Med Child Neurol 47:421–432CrossRefPubMedGoogle Scholar
  8. 8.
    Brunnekreef JJ, van Uden CJ, van Moorsel S, Kooloos JG (2005) Reliability of videotaped observational gait analysis in patients with orthopaedic impairments. BMC Musculoskelet Disord 6:17–25CrossRefPubMedGoogle Scholar
  9. 9.
    Bussmann JBJ, van de Laar YM, Neeleman MP, Stam HJ (1998) Ambulatory accelerometry to quantify motor behaviour in patients after failed back surgery: a validation study. Pain 74(2):153–161CrossRefPubMedGoogle Scholar
  10. 10.
    Culhane KM, O’Conner M, Lyons GM (2005) Accelerometers in rehabilitation medicine for older adults. Age Ageing 34:556–560CrossRefPubMedGoogle Scholar
  11. 11.
    Duda RO, Hart PE, Stork DG (1999) Pattern classification. Wiley, New YorkGoogle Scholar
  12. 12.
    Einspieler C, Prechtl HF (2005) Prechtl′s assessment of general movements: a diagnostic tool for the functional assessment of the young nervous system. Ment Retard Develop Disabil Res Rev 11:61–67CrossRefGoogle Scholar
  13. 13.
    Foerster F, Smeja M, Fahrenberg J (1999) Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Comput Hum Behav 15:571–583CrossRefGoogle Scholar
  14. 14.
    Geurts P (2002) Contributions to decision tree induction: bias/variance trade-off and time series classification. University of Liège, BelgiumGoogle Scholar
  15. 15.
    Groen SE, Blecourt AC, de Postema K, Hadders-Algra M (2005) General movements in early infancy predict neuromotor development at 9 to 12 years of age. Dev Med Child Neurol 47:731–738CrossRefPubMedGoogle Scholar
  16. 16.
    Hoos MB, Kuipers H, Gerver WJ, Westerterp KR (2004) Physical activity pattern of children assessed by triaxial accelerometry. Eur J Clin Nutr 58:1425–1428CrossRefPubMedGoogle Scholar
  17. 17.
    Janssen WG, Bussmann JB, Horemans HL, Stam HJ (2008) Validity of accelerometry in assessing the duration of the sit-to-stand movement. Med Biol Eng Comput 46(9):879–887CrossRefPubMedGoogle Scholar
  18. 18.
    Kaaresen PI, Rønning JA, Tunby J, Nordhov SM, Ulvund SE, Dahl LB (2008) A randomized controlled trial of an early intervention program in low birth weight children: outcome at 2 years. Early Hum Dev 84(3):201–209CrossRefPubMedGoogle Scholar
  19. 19.
    Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GVB (1989) Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res 7:849–860CrossRefPubMedGoogle Scholar
  20. 20.
    Kavanagh JJ, Morrison S, James DA, Barrett R (2006) Reliability of segmental accelerations measured using a new wireless gait analysis system. J Biomech 39:2863–2872CrossRefPubMedGoogle Scholar
  21. 21.
    Keijsers NL, Horstink MW, Gielen SC (2006) Ambulatory motor assessment in Parkinson’s disease. Mov Disord 2l:34–44CrossRefGoogle Scholar
  22. 22.
    Kosmidou VE, Hadjileontiadis LI (2010) Using sample entropy for automated sign language recognition on sEMG and accelerometer data. Med Biol Eng Comput 48(3):255–267Google Scholar
  23. 23.
    Krägeloh-Mann I (2007) Zerebralparesen update (cerebral palsy update). Monatsschrift Kinderheilkunde 155:523–528CrossRefGoogle Scholar
  24. 24.
    Lau HY, Tong KY, Zhu H (2008) Support vector machine for classification of walking conditions using miniature kinematic sensors. Med Biol Eng Comput 46(6):563–573CrossRefPubMedGoogle Scholar
  25. 25.
    LeMoyne R, Jafari R (2008) Quantified deep tendon reflex device, second generation. J Mech Med Biol 8:75–85CrossRefGoogle Scholar
  26. 26.
    LeMoyne R, Coroian C, Mastroianni T, Grundfest W (2008) Accelerometers for quantification of gait and movement disorders: a perspective review. J Mech Med Biol 8(2):137–152CrossRefGoogle Scholar
  27. 27.
    Lennon S, Johnson L (2000) The modified rivermead mobility index: validity and reliability. Disabil Rehabil 22:833–839CrossRefPubMedGoogle Scholar
  28. 28.
    Lötters JC, Schipper J, Veltink PH, Olthuis W (1999) Procedure for in-use calibration of triaxial accelerometers applications. Sens Actuators 68:221–228CrossRefGoogle Scholar
  29. 29.
    Luca P (1997) Fast feature selection with genetic algorithms a filter approach. Lanzi Dipartimento di Elettronica e InformazioneGoogle Scholar
  30. 30.
    Mathie MJ, Celler BG, Lovell NH, Coster AC (2004) Classification of basic daily movements using a triaxial accelerometer. Med Biol Eng Comput 42(5):679–687CrossRefPubMedGoogle Scholar
  31. 31.
    Mayagoitia RE, Nene AV, Veltink PH (2002) Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. J Biomech 35(4):537–542CrossRefPubMedGoogle Scholar
  32. 32.
    Meinecke L, Breitbach-Faller N, Bartz C, Damen R, Rau G, Disselhorst-Klug C (2006) Movement analysis in the early detection of newborns at risk for developing spasticity due to infantile cerebral palsy. Hum Mov Sci 25:125–144CrossRefPubMedGoogle Scholar
  33. 33.
    Menz HB, Lord SR, Fitzpatrick RC (2003) Age-related differences in walking stability. Age Ageing 32:137–142CrossRefPubMedGoogle Scholar
  34. 34.
    Moe-Nilssen R, Helbostad JL (2004) Estimation of gait cycle characteristics by trunk accelerometry. J Biomech 37:121–126CrossRefPubMedGoogle Scholar
  35. 35.
    Ohgi S, Morita S, Loo KK, Mizuike C (2008) Time series analysis of spontaneous upper-extremity movements of premature infants with brain injuries. Phys Ther [Epub ahead of print]Google Scholar
  36. 36.
    Palmer FB (2004) Strategies for the early diagnosis of cerebral palsy. J Pediatr 145(2):8–11Google Scholar
  37. 37.
    Patrick SK, Denington AA, Gauthier MJ, Gillard DM, Prochazka A (2001) Quantification of the UPDRS rigidity scale. IEEE Trans Neural Syst Rehabil Eng 9(1):31–41CrossRefPubMedGoogle Scholar
  38. 38.
    Perry J (1992) Gait analysis: normal and pathological function. Slack, Thorofare, NJGoogle Scholar
  39. 39.
    Prechtl HFR (2001) General movement assessment as a method of developmental neurology: new paradigms and their consequences. Dev Med Child Neurol 43:836–842CrossRefPubMedGoogle Scholar
  40. 40.
    Prechtl HFR, Einspieler C, Bos A, Cioni G, Ferrari F (1997) Spontaneous motor activity as a diagnostic tool––function assessment of the young nervous system––a scientific illustration of Prechtl’s method. The GM Trust, London, GrazGoogle Scholar
  41. 41.
    Saremi K, Marehbian J, Yan X, Regnaux JP, Elashoff R, Bussel B, Dobkin BH (2006) Reliability and validity of bilateral thigh and foot accelerometry measures of walking in healthy and hemiparetic subjects. Neurorehabil Neural Repair 20:297–305CrossRefPubMedGoogle Scholar
  42. 42.
    Stahlmann N, Härtel C, Knopp A, Gehring B, Kiecksee H, Thyen U (2007) Predictive value of neurodevelopmental assessment versus evaluation of general movements for motor outcome in preterm infants with birth weights <1500 g. Neuropediatrics 38:91–99CrossRefPubMedGoogle Scholar
  43. 43.
    Vaillancourt DE, Newell KM (2000) The dynamic of resting and postural tremor in Parkinson’s disease. Clin Neurophysiol 111:2046–2056CrossRefPubMedGoogle Scholar
  44. 44.
    van den Bogert AJ, Read L, Nigg BM (1996) A method for inverse dynamic analysis using accelerometry. J Biomech 29:949–954CrossRefPubMedGoogle Scholar
  45. 45.
    Vincer MJ, Allen AC, Joseph KS, Stinson DA, Scott H, Wood E (2006) Increasing prevalence of cerebral palsy among very preterm infants: a population-based study. Pediatrics 118:1621–1626CrossRefGoogle Scholar
  46. 46.
    Warner HR, Sorenson DK, Bouhaddou O (1997) Knowledge engineering in health informatics. Springer, New YorkGoogle Scholar
  47. 47.
    Yang J, Honavar V (1998) Feature subject selection using a genetic algorithm. Iowa State UniversityGoogle Scholar
  48. 48.
    Yanga J (2006) A simple approach to integration of acceleration data for dynamic soil-structure interaction analysis. Soil Dyn Earthquake Eng 26(8):725–734CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2010

Authors and Affiliations

  • Franziska Heinze
    • 1
  • Katharina Hesels
    • 1
  • Nico Breitbach-Faller
    • 2
  • Thomas Schmitz-Rode
    • 1
  • Catherine Disselhorst-Klug
    • 1
  1. 1.Chair of Applied Medical EngineeringRWTH Aachen UniversityAachenGermany
  2. 2.Social Pediatric CentreKlinikum EsslingenEsslingenGermany

Personalised recommendations