Medical & Biological Engineering & Computing

, Volume 48, Issue 10, pp 965–976

Microfabricated substrates as a tool to study cell mechanotransduction

  • Jimmy le Digabel
  • Marion Ghibaudo
  • Léa Trichet
  • Alain Richert
  • Benoit Ladoux
Special Issue - Review


Mechanical cell–substrate interactions affect many cellular functions such as spreading, migration, and even differentiation. These interactions can be studied by incorporating micro- and nanotechnology-related tools. The design of substrates based on these technologies offers new possibilities to probe the cellular responses to changes in their physical environment. The investigations of the mechanical interactions of cells and their surrounding matrix can be carried out in well-defined and near physiological conditions. In particular, this includes the transmission of forces as well as rigidity and topography sensing mechanisms. Here, we review techniques and tools based on nano- and micro-fabrication that have been developed to analyze the influence of the mechanical properties of the substrate on cell functions. We also discuss how microfabrication methods have improved our knowledge on cell adhesion and migration and how they could solve remaining problems in the field of mechanobiology.


Microfabrication Cell mechanics Substrate stiffness Cell contractility Integrins Topography Mechanotransduction 


  1. 1.
    Allioux-Guérin M, Icard-Arcizet D, Durieux C, Hénon S, Gallet F, Mevel J-C, Masse MJ, Coppey-Moisan M (2009) Spatio-temporal analysis of cell response to a rigidity gradient: a quantitative study by multiple optical tweezers. Biophys J 96:238–247CrossRefPubMedGoogle Scholar
  2. 2.
    Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472CrossRefPubMedGoogle Scholar
  3. 3.
    Barentin C, Sawada Y, Rieu JP (2006) An iterative method to calculate forces exerted by single cells and multicellular assemblies from the detection of deformations of flexible substrates. Eur Biophys J Biophys Lett 35:328–339Google Scholar
  4. 4.
    Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153:881–887CrossRefPubMedGoogle Scholar
  5. 5.
    Berry CC, Campbell G, Spadiccino A, Robertson M, Curtis ASG (2004) The influence of microscale topography on fibroblast attachment and motility. Biomaterials 25:5781–5788CrossRefPubMedGoogle Scholar
  6. 6.
    Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19:677–695CrossRefPubMedGoogle Scholar
  7. 7.
    Biais N, Ladoux B, Higashi D, So M, Sheetz M (2008) Cooperative retraction of bundled type IV pili enables nanonewton force generation. PLoS Biol 6:e87CrossRefPubMedGoogle Scholar
  8. 8.
    Bischofs IB, Schwarz US (2003) Cell organization in soft media due to active mechanosensing. Proc Natl Acad Sci USA 100:9274–9279CrossRefPubMedGoogle Scholar
  9. 9.
    Borisy GG, Svitkina TM (2000) Actin machinery: pushing the envelope. Curr Opin Cell Biol 12:104–112CrossRefPubMedGoogle Scholar
  10. 10.
    Burton K, Park JH, Taylor DL (1999) Keratocytes generate traction forces in two phases. Mol Biol Cell 10:3745–3769PubMedGoogle Scholar
  11. 11.
    Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9:108–122CrossRefPubMedGoogle Scholar
  12. 12.
    Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282:C595–C605PubMedGoogle Scholar
  13. 13.
    Cai YF, Rossier O, Gauthier NC, Biais N, Fardin MA, Zhang X, Miller LW, Ladoux B, Cornish VW, Sheetz MP (2010) Cytoskeletal coherence requires myosin-IIA contractility. J Cell Sci 123:413–423CrossRefPubMedGoogle Scholar
  14. 14.
    Carter SB (1967) Haptotaxis and mechanism of cell motility. Nature 213:256–260CrossRefPubMedGoogle Scholar
  15. 15.
    Chan CE, Odde DJ (2008) Traction dynamics of filopodia on compliant substrates. Science 322:1687–1691CrossRefPubMedGoogle Scholar
  16. 16.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428CrossRefPubMedGoogle Scholar
  17. 17.
    Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88:39–48CrossRefPubMedGoogle Scholar
  18. 18.
    Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkinson CDW (1987) Topographical control of cell behavior. 1. Simple step cues. Development 99:439–448PubMedGoogle Scholar
  19. 19.
    Cortese B, Gigli G, Riehle M (2009) Mechanical gradient cues for guided cell motility and control of cell behavior on uniform substrates. Adv Funct Mater 19:2961–2968CrossRefGoogle Scholar
  20. 20.
    Cukierman E, Pankov R, Yamada KM (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14:633–639CrossRefPubMedGoogle Scholar
  21. 21.
    Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18:1573–1583CrossRefPubMedGoogle Scholar
  22. 22.
    Curtis ASG, Wilkinson CD (1998) Reactions of cells to topography. J Biomater Sci Polym Edn 9:1313–1329CrossRefGoogle Scholar
  23. 23.
    De R, Zemel A, Safran SA (2007) Dynamics of cell orientation. Nat Phys 3:655–659CrossRefGoogle Scholar
  24. 24.
    del Rio A, Perez-Jimenez R, Liu RC, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323:638–641CrossRefPubMedGoogle Scholar
  25. 25.
    Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76:2307–2316CrossRefPubMedGoogle Scholar
  26. 26.
    Dembo M, Oliver T, Ishihara A, Jacobson K (1996) Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys J 70:2008–2022CrossRefPubMedGoogle Scholar
  27. 27.
    Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143CrossRefPubMedGoogle Scholar
  28. 28.
    du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Silberzan P, Ladoux B (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci USA 102:2390–2395CrossRefPubMedGoogle Scholar
  29. 29.
    Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86:617–628CrossRefPubMedGoogle Scholar
  30. 30.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689CrossRefPubMedGoogle Scholar
  31. 31.
    Even-Ram S, Yamada KM (2005) Cell migration in 3D matrix. Curr Opin Cell Biol 17:524–532CrossRefPubMedGoogle Scholar
  32. 32.
    Frey MT, Tsai IY, Russell TP, Hanks SK, Wang YL (2006) Cellular responses to substrate topography: role of myosin II and focal adhesion kinase. Biophys J 90:3774–3782CrossRefPubMedGoogle Scholar
  33. 33.
    Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374CrossRefPubMedGoogle Scholar
  34. 34.
    Galbraith CG, Sheetz MP (1997) A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci USA 94:9114–9118CrossRefPubMedGoogle Scholar
  35. 35.
    Ganz A, Lambert M, Saez A, Silberzan P, Buguin A, Mege RM, Ladoux B (2006) Traction forces exerted through N-cadherin contacts. Biol Cell 98:721–730CrossRefPubMedGoogle Scholar
  36. 36.
    Geiger B, Bershadsky A (2001) Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol 13:584–592CrossRefPubMedGoogle Scholar
  37. 37.
    Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805CrossRefPubMedGoogle Scholar
  38. 38.
    Georges PC, Janmey PA (2005) Cell type-specific response to growth on soft materials. J Appl Physiol 98:1547–1553CrossRefPubMedGoogle Scholar
  39. 39.
    Ghassemi S, Biais N, Maniura K, Wind SJ, Sheetz MP, Hone J (2008) Fabrication of elastomer pillar arrays with modulated stiffness for cellular force measurements, May 27–30; Portland, OR, pp 2549–2553Google Scholar
  40. 40.
    Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P, Buguin A, Ladoux B (2008) Traction forces and rigidity sensing regulate cell functions. Soft Matter 4:1836–1843CrossRefGoogle Scholar
  41. 41.
    Ghibaudo M, Trichet L, Le Digabel J, Richert A, Hersen P, Ladoux B (2009) Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration. Biophys J 97:357–368CrossRefPubMedGoogle Scholar
  42. 42.
    Ghosh K, Ingber DE (2007) Micromechanical control of cell and tissue development: implications for tissue engineering. Adv Drug Deliv Rev 59:1306–1318CrossRefPubMedGoogle Scholar
  43. 43.
    Giannone G, Dubin-Thaler BJ, Dobereiner HG, Kieffer N, Bresnick AR, Sheetz MP (2004) Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116:431–443CrossRefPubMedGoogle Scholar
  44. 44.
    Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177–179CrossRefPubMedGoogle Scholar
  45. 45.
    Harris AK, Stopak D, Wild P (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290:249–251CrossRefPubMedGoogle Scholar
  46. 46.
    Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103CrossRefPubMedGoogle Scholar
  47. 47.
    Huang S, Ingber DE (2005) Cell tension, matrix mechanics, and cancer development. Cancer Cell 8:175–176CrossRefPubMedGoogle Scholar
  48. 48.
    Ingber DE (2003) Mechanosensation through integrins: cells act locally but think globally. Proc Natl Acad Sci USA 100:1472–1474CrossRefPubMedGoogle Scholar
  49. 49.
    Isenberg BC, DiMilla PA, Walker M, Kim S, Wong JY (2009) Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys J 97:1313–1322CrossRefPubMedGoogle Scholar
  50. 50.
    Janmey PA, Georges PC, Hvidt S (2007) Basic rheology for biologists. Methods in cell biology. Academic Press, New York, p 1, 3–27Google Scholar
  51. 51.
    Kaiser JP, Reinmann A, Bruinink A (2006) The effect of topographic characteristics on cell migration velocity. Biomaterials 27:5230–5241CrossRefPubMedGoogle Scholar
  52. 52.
    Kajzar A, Cesa CM, Kirchgessner N, Hoffman B, Merkel R (2008) Toward physiological conditions for cell analyses: forces of heart muscle cells suspended between elastic micropillars. Biophys J 94:1854–1866CrossRefPubMedGoogle Scholar
  53. 53.
    Kandow CE, Georges PC, Janmey PA, Beningo KA (2007) Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. Methods in cell biology. Academic Press, New York, pp 29–46Google Scholar
  54. 54.
    Kim DH, Han K, Gupta K, Kwon KW, Suh KY, Levchenko A (2009) Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30:5433–5444CrossRefPubMedGoogle Scholar
  55. 55.
    Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A, Silberzan P, Mege RM (2010) Strength dependence of cadherin-mediated adhesions. Biophys J 98:534–542CrossRefPubMedGoogle Scholar
  56. 56.
    Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369CrossRefPubMedGoogle Scholar
  57. 57.
    Legant WR, Pathak A, Yang MT, Deshpande VS, McMeeking RM, Chen CS (2009) Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc Natl Acad Sci USA 106:10097–10102CrossRefPubMedGoogle Scholar
  58. 58.
    Lemmon CA, Chen CS, Romer LH (2009) Cell traction forces direct fibronectin matrix assembly. Biophys J 96:729–738CrossRefPubMedGoogle Scholar
  59. 59.
    Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152CrossRefPubMedGoogle Scholar
  60. 60.
    Mandeville JTH, Lawson MA, Maxfield FR (1997) Dynamic imaging of neutrophil migration in three dimensions: mechanical interactions between cells and matrix. J Leukoc Biol 61:188–200PubMedGoogle Scholar
  61. 61.
    Martin P, Parkhurst SM (2004) Parallels between tissue repair and embryo morphogenesis. Development 131:3021–3034CrossRefPubMedGoogle Scholar
  62. 62.
    Meshel AS, Wei Q, Adelstein RS, Sheetz MP (2005) Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol 7:157–164Google Scholar
  63. 63.
    Mitrossilis D, Fouchard J, Guiroy A, Desprat N, Rodriguez N, Fabry B, Asnacios A (2009) Single-cell response to stiffness exhibits muscle-like behavior. Proc Natl Acad Sci USA 106:18243–18248CrossRefPubMedGoogle Scholar
  64. 64.
    Muller WA (2003) Leukocyte–endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24:327–334PubMedGoogle Scholar
  65. 65.
    Munevar S, Wang YL, Dembo M (2001) Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J 80:1744–1757CrossRefPubMedGoogle Scholar
  66. 66.
    Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA 102:11594–11599CrossRefPubMedGoogle Scholar
  67. 67.
    Nicolas A, Safran SA (2006) Limitation of cell adhesion by the elasticity of the extracellular matrix. Biophys J 91:61–73CrossRefPubMedGoogle Scholar
  68. 68.
    Nicolas A, Geiger B, Safran SA (2004) Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc Natl Acad Sci USA 101:12520–12525CrossRefPubMedGoogle Scholar
  69. 69.
    Paszek MJ, Nastaran Z, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettinger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254CrossRefPubMedGoogle Scholar
  70. 70.
    Paul R, Heil P, Spatz JP, Schwarz US (2008) Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment. Biophys J 94:1470–1482CrossRefPubMedGoogle Scholar
  71. 71.
    Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94:13661–13665CrossRefPubMedGoogle Scholar
  72. 72.
    Pelham RJ, Wang YL (1999) High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol Biol Cell 10:935–945PubMedGoogle Scholar
  73. 73.
    Petronis S, Gold J, Kasemo B (2003) Microfabricated force-sensitive elastic substrates for investigation of mechanical cell–substrate interactions. J Micromech Microeng 13:900–913CrossRefGoogle Scholar
  74. 74.
    Peyton SR, Putnam AJ (2005) Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol 204:198–209CrossRefPubMedGoogle Scholar
  75. 75.
    Rabodzey A, Alcaide P, Luscinskas FW, Ladoux B (2008) Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys J 95:1428–1438CrossRefPubMedGoogle Scholar
  76. 76.
    Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153:1175–1185CrossRefPubMedGoogle Scholar
  77. 77.
    Roos W, Ulmer J, Grater S, Surrey T, Spatz JP (2005) Microtubule gliding and cross-linked microtubule networks on micropillar interfaces. Nano Lett 5:2630–2634CrossRefPubMedGoogle Scholar
  78. 78.
    Rovensky YA, Bershadsky AD, Givargizov EI, Obolenskaya LN, Vasiliev JM (1991) Spreading of mouse fibroblasts on the substrate with multiple spikes. Exp Cell Res 197:107–112CrossRefPubMedGoogle Scholar
  79. 79.
    Saez A, Buguin A, Silberzan P, Ladoux B (2005) Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J 89:L52–L54CrossRefPubMedGoogle Scholar
  80. 80.
    Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B (2007) Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci USA 104:8281–8286CrossRefPubMedGoogle Scholar
  81. 81.
    Sahai E (2005) Mechanisms of cancer cell invasion. Curr Opin Genet Dev 15:87–96CrossRefPubMedGoogle Scholar
  82. 82.
    Schwarz US, Balaban NQ, Riveline D, Bershadsky A, Geiger B, Safran SA (2002) Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys J 83:1380–1394CrossRefPubMedGoogle Scholar
  83. 83.
    Sheetz MP, Felsenfeld DP, Galbraith CG (1998) Cell migration: regulation of force on extracellular-matrix–integrin complexes. Trends Cell Biol 8:51–54CrossRefPubMedGoogle Scholar
  84. 84.
    Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DIC, Whitesides GM, Ingber DE (1994) Engineering cell-shape and function. Science 264:696–698CrossRefPubMedGoogle Scholar
  85. 85.
    Smith ML, Gourdon D, Little WC, Kubow KE, Eguiluz RA, Luna-Morris S, Vogel V (2007) Force-induced unfolding of fibronectin in the extracellular matrix of living cells. Plos Biol 5:2243–2254Google Scholar
  86. 86.
    Sniadecki N, Desai RA, Ruiz SA, Chen CS (2006) Nanotechnology for cell–substrate interactions. Ann Biomed Eng 34:59–74CrossRefPubMedGoogle Scholar
  87. 87.
    Steinberg T, Schulz S, Spatz JP, Grabe N, Mussig E, Kohl A, Komposch G, Tomakidi P (2007) Early keratinocyte differentiation on micropillar interfaces. Nano Lett 7:287–294CrossRefPubMedGoogle Scholar
  88. 88.
    Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2001) Laminar flows—subcellular positioning of small molecules. Nature 411:1016CrossRefPubMedGoogle Scholar
  89. 89.
    Tan J, Shen H, Saltzman WM (2001) Micron-scale positioning of features influences the rate of polymorphonuclear leukocyte migration. Biophys J 81:2569–2579CrossRefPubMedGoogle Scholar
  90. 90.
    Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100:1484–1489CrossRefPubMedGoogle Scholar
  91. 91.
    Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF (2003) Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci 116:1881–1892CrossRefPubMedGoogle Scholar
  92. 92.
    Thery M, Racine V, Pepin A, Piel M, Chen Y, Sibarita JB, Bornens M (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7:947–953CrossRefPubMedGoogle Scholar
  93. 93.
    Thery M, Pepin A, Dressaire E, Chen Y, Bornens M (2006) Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motil Cytoskelet 63:341–355CrossRefGoogle Scholar
  94. 94.
    Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ (2009) Physical forces during collective cell migration. Nat Phys 5:426–430CrossRefGoogle Scholar
  95. 95.
    Tzvetkova-Chevolleau T, Stephanou A, Fuard D, Ohayon J, Schiavone P, Tracqui P (2008) The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 29:1541–1551CrossRefPubMedGoogle Scholar
  96. 96.
    Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275CrossRefPubMedGoogle Scholar
  97. 97.
    Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, disassembly and turnover in migrating cells—over and over and over again. Nat Cell Biol 4:E97–E100CrossRefPubMedGoogle Scholar
  98. 98.
    Wolf K, Friedl P (2009) Mapping proteolytic cancer cell–extracellular matrix interfaces. Clin Exp Metastasis 26:289–298CrossRefPubMedGoogle Scholar
  99. 99.
    Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mat Sci 28:153–184CrossRefGoogle Scholar
  100. 100.
    Yim EKF, Reano RM, Pang SW, Yee AF, Chen CS, Leong KW (2005) Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26:5405–5413CrossRefPubMedGoogle Scholar
  101. 101.
    Zaman MH, Trapani LM, Siemeski A, MacKellar D, Gong HY, Kamm RD, Wells A, Lauffenburger DA, Matsudaira P (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci USA 103:10889–10894CrossRefPubMedGoogle Scholar
  102. 102.
    Zhang YZ, Su B, Venugopal J, Ramakrishna S, Lim CT (2007) Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers. Int J Nanomed 2:623–638Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2010

Authors and Affiliations

  • Jimmy le Digabel
    • 1
  • Marion Ghibaudo
    • 1
  • Léa Trichet
    • 1
  • Alain Richert
    • 1
  • Benoit Ladoux
    • 1
  1. 1.Laboratoire Matière et Systèmes Complexes (MSC)CNRS UMR 7057 & Université Paris DiderotParisFrance

Personalised recommendations