A simulation technique for computation of the dosimetric effects of setup, organ motion and delineation uncertainties in radiotherapy

  • Bongile Mzenda
  • Mir Hosseini-Ashrafi
  • Antony Palmer
  • Honghai Liu
  • David J. Brown
Original Article

Abstract

In this study, we introduce a novel simulation technique to incorporate delineation errors into radiotherapy treatment margins and combine them with organ motion and set-up errors to investigate the cumulative dosimetric effects in different tumour sites. The effects of applying patient realignment correction protocols for radical treatments of prostate, lung and brain tumours were also modelled. Simulations were based on data from measurements using image-guidance techniques, including the use of fiducial markers in prostate and breathing correction techniques for the lung. The use of different sizes of planning target volume (PTV) margins was also evaluated. The prostate clinical target volumes’ V99% showed up to 3.2% improvement with reduction in treatment uncertainties. For the lung plans, the V99% increased by up to an average of 10% with increase in treatment margin size from 0.5 to 1.5 cm. This improvement was, however, at the detriment of the dose delivered to the critical organs where the maximum dose received by the spinal cord increased by up to 0.5 Gy per fraction. These results were used to deduce the possible margin reductions and dose escalation achievable with reduced uncertainties.

Keywords

Monte Carlo simulation Radiotherapy Motion correction Radiation planning Treatment margins 

References

  1. 1.
    Ahmad S, Vlachaki MT, Teslow TN, Amosson CM, McGary J, The BS, Woo SY, Butler EB, Grant WH (2005) Impact of setup uncertainty in the dosimetry of prostate and surrounding tissues in prostate cancer patients treated with peacock/IMRT. Med Dosim 30:1–7CrossRefPubMedGoogle Scholar
  2. 2.
    BIR (2003) Geometric uncertainties in radiotherapy—defining the planning target volume. British Institute of Radiology, LondonGoogle Scholar
  3. 3.
    Boersma LJ, van den Brink M, Bruce AM, Shouman T, Gras L, Velde A, Lebescue JV (1998) Estimation of the incidence of late bladder and rectum complications after high-dose (70–78 Gy) conformal radiotherapy for prostate cancer, using dose-volume histograms. Int J Radiat Oncol Biol Phys 41:83–92PubMedGoogle Scholar
  4. 4.
    Booth JT, Zavgorodni SF (2001) Modeling the dosimetric consequences of organ motion at CT imaging on radiotherapy treatment planning. Phys Med Biol 46:1369–1377CrossRefPubMedGoogle Scholar
  5. 5.
    Cho BCJ, Craig T (2006) More optimal dose distributions for moving lung tumours: a planning study. Radiother Oncol 79:122–130CrossRefPubMedGoogle Scholar
  6. 6.
    Cranmer-Sargison G (2008) A treatment planning investigation into the dosimetric effects of systematic prostate patient rotational set-up errors. Med Dosim 33:199–205CrossRefPubMedGoogle Scholar
  7. 7.
    Erridge SC, Seppenwoolde Y, Muller SH, van Herk M, De Jaeger K, Belderbos JSA, Boersma LJ, Lebesque JV (2003) Portal imaging to assess set-up errors, tumour motion and tumour shrinkage during conformal radiotherapy of non-small cell lung cancer. Radiother Oncol 66:75–85CrossRefPubMedGoogle Scholar
  8. 8.
    Fu W, Yang Y, Li X, Heron DE, Huq MS, Yue NJ (2006) Dosimetric effects of rotational setup errors on prostate IMRT treatments. Phys Med Biol 51:5321–5331CrossRefPubMedGoogle Scholar
  9. 9.
    Hector CL, Webb S, Evans PM (2000) The dosimetric consequences of inter-fractional patient movement on conventional and intensity-modulated breast radiotherapy treatments. Radiother Oncol 54:57–64CrossRefPubMedGoogle Scholar
  10. 10.
    Kerkhof EM, van der Put RW, Raaymakers BW, van der Heide UA, van Vulpen M, Lagendijk JJW (2008) Variation in target and rectum dose to prostate deformation: an assessment by repeated MR imaging and treatment planning. Phys Med Biol 53:5623–5634CrossRefPubMedGoogle Scholar
  11. 11.
    Killoran JH, Cooy HM, Gladstone DJ, Welte FJ, Beard CJ (1997) A numerical simulation of organ motion and daily set-up uncertainties: implications for radiation therapy. Int J Radiat Oncol Biol Phys 37:213–221PubMedGoogle Scholar
  12. 12.
    Li HS, Chetty IJ, Enke CA, Foster RD, Willoughby TR, Kupellian PA, Solberg TD (2008) Dosimetric consequences of intrafraction prostate motion. Int J Radiat Oncol Biol Phys 71:801–812PubMedGoogle Scholar
  13. 13.
    Litzenberg DW, Balter JM, Hadley SW, Sandler HM, Willoughby TR, Kupelian PA, Levine L (2006) Influence of intrafraction motion on margins for prostate radiotherapy. Int J Radiat Oncol Biol Phys 65:548–553PubMedGoogle Scholar
  14. 14.
    Mageras GS, Kutcher GJ, Liebel SA, Zelefsky MJ, Melian E, Mohan R, Fuks Z (1996) A method of incorporating organ motion uncertainties into three-dimensional conformal treatment plans. Int J Radiat Oncol Biol Phys 35:333–342PubMedGoogle Scholar
  15. 15.
    Maleike D, Unkelbach J, Oelfke U (2006) Simulation and visualisation of dose uncertainties due to interfractional organ motion. Phys Med Biol 51:2237–2252CrossRefPubMedGoogle Scholar
  16. 16.
    Meijer G, Rasch C, Remeijer P, Lebesque J (2003) Three-dimensional analysis of delineation errors, setup errors, and organ motion during radiotherapy of bladder cancer. Int J Radiat Oncol Biol Phys 55:1277–1287PubMedGoogle Scholar
  17. 17.
    Miralbell R, Özsoy O, Pugliesi A, Carballo N, Escudé L, Jargy C, Nouet P, Rouzaud M (2003) Dosimetric implications of changes in patient repositioning and organ motion in conformal radiotherapy for prostate cancer. Radiother Oncol 66:197–202CrossRefPubMedGoogle Scholar
  18. 18.
    Mzenda B, Hosseini-Ashrafi ME, Palmer A, Liu H, Brown DJ (2008) Quantification of the effects of random and systematic errors in external beam radiotherapy using a Monte Carlo simulation. In: Proceedings of the IPEM biennial radiotherapy meeting, pp 92–93Google Scholar
  19. 19.
    Mzenda B, Hosseini-Ashrafi ME, Palmer A, Liu H, Brown DJ (2008) An intelligent Gaussian mixture model to improve delineation accuracy in radiotherapy. In: Proceedings of the IPEM biennial radiotherapy meeting, pp 131–132Google Scholar
  20. 20.
    Piermattei A, Fidanzio A, Azario L, Greco F, Mameli A, Cilla S, Grimaldi L, D’Onofrio G, Augelli BG, Stimato G, Gaudino D, Ramella S, D’Angelillo R, Cellini F, Trodella L (2009) In patient dose reconstruction using a cine acquisition for dynamic arc radiation therapy. Med Biol Eng Comput 47(4):425–433CrossRefPubMedGoogle Scholar
  21. 21.
    Piermattei A, Fidanzio A, Cilla S, Greco F, Azario L, Sabatino D, Grusio M, Cozzolino M, Fusco V (2010) Dose-guided radiotherapy for lung tumors. Med Biol Eng Comput 48(1):79–86CrossRefPubMedGoogle Scholar
  22. 22.
    Steel GG (2002) Basic clinical radiobiology. Edward Arnold, LondonGoogle Scholar
  23. 23.
    Thongphiew D, Wu QJ, Lee RW, Chankong V, Yoo S, MacMahon R, Yin F-F (2009) Comparison of online IGRT techniques for prostate IMRT treatment: adaptive vs. repositioning correction. Med Phys 36:1651–1662CrossRefPubMedGoogle Scholar
  24. 24.
    van Asselen B, Dehnad H, Raaijmakers PJ, Lagendijk JJW, Terhaard CHJ (2004) Implanted gold markers for position verification during irradiation of head-and-neck cancers: a feasibility study. Int J Radiat Oncol Biol Phys 59:1011–1017CrossRefPubMedGoogle Scholar
  25. 25.
    van Haaren PMA, Bel A, Hofman P, van Vulpen M, Kotte ANTJ, van der Heide UA (2009) Influence of daily setup measurements and corrections on the estimated delivered dose during IMRT treatment of prostate cancer patients. Radiother Oncol 90:291–298CrossRefPubMedGoogle Scholar
  26. 26.
    van Herk M (2004) Errors and margins in radiotherapy. Semin Radiat Oncol 14:52–64CrossRefPubMedGoogle Scholar
  27. 27.
    van Herk M, Remeijer P, Rasch C, Lebesque JV (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135PubMedGoogle Scholar
  28. 28.
    Wang Z, Rajagopalan B, Malhotra HK, Kuettel MR, Podgorsak MB (2007) The effect of positional realignment on dose delivery to the prostate and organs-at-risk for 3DCRT. Med Dosim 32:1–6CrossRefPubMedGoogle Scholar
  29. 29.
    Zaidi H, Ay MR (2007) Current status and new horizons in Monte Carlo simulation of X-ray CT scanners. Med Biol Eng Comput 45(9):809–817CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang M, Moiseenko V, Liu M, Craig T (2006) Internal fiducial markers can assist dose escalation in treatment of prostate cancer: result of organ motion simulations. Phys Med Biol 51:269–285CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2010

Authors and Affiliations

  • Bongile Mzenda
    • 1
  • Mir Hosseini-Ashrafi
    • 1
  • Antony Palmer
    • 1
  • Honghai Liu
    • 2
  • David J. Brown
    • 2
  1. 1.Radiotherapy Physics Section, Medical Physics DepartmentQueen Alexandra HospitalPortsmouthUK
  2. 2.Institute of Industrial ResearchPortsmouthUK

Personalised recommendations