A method for detecting significant genomic regions associated with oral squamous cell carcinoma using aCGH

  • Ki-Yeol Kim
  • Jin Kim
  • Hyung Jun Kim
  • Woong Nam
  • In-Ho ChaEmail author
Original Article


Array comparative genomic hybridization (aCGH) provides a genome-wide technique for identifying chromosomal aberrations in human diseases, including cancer. Chromosomal aberrations in cancers are defined as regions that contain an increased or decreased DNA copy number, relative to normal samples. The identification of genomic regions associated with systematic aberrations provides insights into initiation and progression of cancer, and improves diagnosis, prognosis, and therapy strategies. The McNemar test can be used to detect differentially expressed genes after discretization of gene expressions in a microarray experiment for the matched dataset. In this study, we propose a method to detect significantly altered DNA regions, shifted McNemar test, which is based on the standard McNemar test and takes into account changes in copy number variations and the region size throughout the whole genome. In addition, this novel method can be used to detect genomic regions associated with the progress of oral squamous cell carcinoma (OSCC). The performance of the proposed method was evaluated based on the homogeneity within the selected regions and the classification accuracies of the selected regions. This method might be useful for identifying new candidate genes that neighbor known genes based on the whole-genomic variation because it detects significant chromosomal regions, not independent probes.


Shifted McNemar Oral squamous cell carcinoma aCGH Genomic variations Systematic aberrations Significant chromosomal region 



This work was supported by Priority Research Centers Program through the National Research Foundation of Korea(NRF), funded by the Ministry of Education, Science and Technology (2009-0094030).


  1. 1.
    Bennett BM, Underwood RE (1970) On McNemar’s test for the 2 × 2 table and its power function. Biometrics 26:339–343CrossRefGoogle Scholar
  2. 2.
    Ben-Yaacov E, Eldar YC (2008) A fast and flexible method for the segmentation of aCGH data. Bioinformatics 24(16):i139–i145CrossRefGoogle Scholar
  3. 3.
    Chen HI, Hsu FH, Jiang Y, Tsai MH, Yang PC, Meltzer PS, Chuang EY, Chen Y (2008) A probe-density-based analysis method for array CGH data: simulation, normalization and centralization. Bioinformatics 24(16):1749–1756CrossRefGoogle Scholar
  4. 4.
    Chien CY, Su CY, Chuang HC, Fang FM, Huang HY, Chen CM, Chen CH, Huang CC (2008) Angiopoietin-1 and -2 expression in recurrent squamous cell carcinoma of the oral cavity. J Surg Oncol 97(3):273–277CrossRefGoogle Scholar
  5. 5.
    Eilers PH, de Menezes RX (2005) Quantile smoothing of array CGH data. Bioinformatics 21(7):1146–1153CrossRefGoogle Scholar
  6. 6.
    Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA, Altshuler DM, Aburatani H, Jones KW, Tyler-Smith C, Hurles ME et al (2006) Copy number variation: new insights in genome diversity. Genome Res 16(8):949–961CrossRefGoogle Scholar
  7. 7.
    Garnis C, Campbell J, Zhang L, Rosin MP, Lam WL (2004) OCGR array: an oral cancer genomic regional array for comparative genomic hybridization analysis. Oral Oncol 40(5):511–519CrossRefGoogle Scholar
  8. 8.
    Huang Q, Raya A, DeJesus P, Chao SH, Quon KC, Caldwell JS, Chanda SK, Izpisua-Belmonte JC, Schultz PG (2004) Identification of p53 regulators by genome-wide functional analysis. Proc Natl Acad Sci USA 101(10):3456–3461CrossRefGoogle Scholar
  9. 9.
    Huang J, Gusnanto A, O’Sullivan K, Staaf J, Borg A, Pawitan Y (2007) Robust smooth segmentation approach for array CGH data analysis. Bioinformatics 23(18):2463–2469CrossRefGoogle Scholar
  10. 10.
    Hupe P, Stransky N, Thiery JP, Radvanyi F, Barillot E (2004) Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics 20(18):3413–3422CrossRefGoogle Scholar
  11. 11.
    Katoh M (2002) Molecular cloning and characterization of OSR1 on human chromosome 2p24. Int J Mol Med 10(2):221–225Google Scholar
  12. 12.
    Kim KY, Ki DH, Jeung HC, Chung HC, Rha SY (2008) Improving the prediction accuracy in classification using the combined data sets by ranks of gene expressions. BMC Bioinformatics 9:283CrossRefGoogle Scholar
  13. 13.
    Lai W, Choudhary V, Park PJ (2008) CGHweb: a tool for comparing DNA copy number segmentations from multiple algorithms. Bioinformatics 24(7):1014–1015CrossRefGoogle Scholar
  14. 14.
    Lengauer C, Issa JP (1998) The role of epigenetics in cancer. DNA methylation, imprinting, the epigenetics of cancer—an American Association for Cancer Research Special Conference. Las Croabas, Puerto Rico, 12–16 1997 December. Mol Med Today 4(3):102–103CrossRefGoogle Scholar
  15. 15.
    Li Y, Zhu J (2007) Analysis of array CGH data for cancer studies using fused quantile regression. Bioinformatics 23(18):2470–2476CrossRefGoogle Scholar
  16. 16.
    Li C, Feng HC, Chen JC, Song YF (2005) Expression and significance of angiopoietin-1 and angiopoietin-2 in oral squamous cell cacinoma. Ai Zheng 24(11):1388–1393Google Scholar
  17. 17.
    Liu J, Mohammed J, Carter J, Ranka S, Kahveci T, Baudis M (2006) Distance-based clustering of CGH data. Bioinformatics 22(16):1971–1978CrossRefGoogle Scholar
  18. 18.
    Liu CJ, Lin SC, Chen YJ, Chang KM, Chang KW (2006) Array-comparative genomic hybridization to detect genome wide changes in microdissected primary and metastatic oral squamous cell carcinomas. Mol Carcinog 45(10):721–731CrossRefGoogle Scholar
  19. 19.
    Liu J, Ranka S, Kahveci T (2008) Classification and feature selection algorithms for multi-class CGH data. Bioinformatics 24(13):i86–i95CrossRefGoogle Scholar
  20. 20.
    McNemar Q (1947) Note on the sampling error of the differences between correlated proportions or percentages. Psychometrika 12:53–157CrossRefGoogle Scholar
  21. 21.
    Nakaya K, Yamagata HD, Arita N, Nakashiro KI, Nose M, Miki T, Hamakawa H (2007) Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array. Oncogene 26(36):5300–5308CrossRefGoogle Scholar
  22. 22.
    O’Regan EM, Toner ME, Smyth PC, Finn SP, Timon C, Cahill S, Flavin R, O’Leary JJ, Sheils O (2006) Distinct array comparative genomic hybridization profiles in oral squamous cell carcinoma occurring in young patients. Head Neck 28(4):330–338CrossRefGoogle Scholar
  23. 23.
    Pinkel D, Albertson DG (2005) Comparative genomic hybridization. Annu Rev Genomics Hum Genet 6:331–354CrossRefGoogle Scholar
  24. 24.
    Shah SP, Xuan X, DeLeeuw RJ, Khojasteh M, Lam WL, Ng R, Murphy KP (2006) Integrating copy number polymorphisms into array CGH analysis using a robust HMM. Bioinformatics 22(14):e431–e439CrossRefGoogle Scholar
  25. 25.
    Squire JA, Bayani J, Luk C, Unwin L, Tokunaga J, MacMillan C, Irish J, Brown D, Gullane P, Kamel-Reid S (2002) Molecular cytogenetic analysis of head and neck squamous cell carcinoma: by comparative genomic hybridization, spectral karyotyping, and expression array analysis. Head Neck 24(9):874–887CrossRefGoogle Scholar
  26. 26.
    Suzuki E, Imoto I, Pimkhaokham A, Nakagawa T, Kamata N, Kozaki KI, Amagasa T, Inazawa J (2007) PRTFDC1, a possible tumor-suppressor gene, is frequently silenced in oral squamous-cell carcinomas by aberrant promoter hypermethylation. Oncogene 26(57):7921–7932CrossRefGoogle Scholar
  27. 27.
    Venkatraman ES, Olshen AB (2007) A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23(6):657–663CrossRefGoogle Scholar
  28. 28.
    Watabe K, Ito A, Asada H, Endo Y, Kobayashi T, Nakamoto K, Itami S, Takao S, Shinomura Y, Aikou T et al (2001) Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells. Jpn J Cancer Res 92(2):140–151Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2010

Authors and Affiliations

  • Ki-Yeol Kim
    • 1
  • Jin Kim
    • 1
  • Hyung Jun Kim
    • 2
  • Woong Nam
    • 2
  • In-Ho Cha
    • 1
    • 2
    Email author
  1. 1.Oral Cancer Research Institute, College of DentistryYonsei UniversitySeoulRepublic of Korea
  2. 2.Department of Oral and Maxillofacial Surgery, College of DentistryYonsei UniversitySeoulRepublic of Korea

Personalised recommendations