Medical & Biological Engineering & Computing

, Volume 48, Issue 4, pp 371–380 | Cite as

Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography

  • Gianluca De SantisEmail author
  • Peter Mortier
  • Matthieu De Beule
  • Patrick Segers
  • Pascal Verdonck
  • Benedict Verhegghe
Original Article


Patient-specific simulations are widely used to investigate the local hemodynamics within realistic morphologies. However, pre-processing and mesh generation are time consuming, operator dependent, and the quality of the resulting mesh is often suboptimal. Therefore, a semi-automatic methodology for patient-specific reconstruction and structured meshing of a left coronary tree from biplane angiography is presented. Seven hexahedral grids have been generated with the new method (50,000–3,200,000 cells) and compared to nine unstructured tetrahedral grids with prismatic boundary layer (150,000–3,100,000 cells). Steady-state blood flow simulation using Computational Fluid Dynamics (CFD) has been used to calculate the Wall Shear Stress (WSS). Our results (99 percentile, area-weighted and local WSS values along a line) demonstrate that hexahedral meshes with respect to tetrahedral/prismatic meshes converge better, and for the same accuracy of the result, six times less cells and 14 times less computational time are required. Hexahedral meshes are superior to tetrahedral/prismatic meshes and should be preferred for the calculation of the WSS.


Patient-specific Structured hexahedral mesh Biplane angiography pyFormex CFD 



The authors thank Dr. Yves Taeymans, PhD, Bram Trachet, and Thomas De Schryver for their valuable support, and the Philips Medical System Nederland B.V., Best, The Netherlands.

Supplementary material

11517_2010_583_MOESM1_ESM.pdf (97 kb)
Supplementary material 1 (PDF 97 kb)


  1. 1.
    Agostoni P, Biondi-Zoccai G, Van Langenhove G, Cornelis K, Vermeersch P, Convens C, Vassanelli C, Van Den Heuvel P, Van Den Branden F, Verheye S (2008) Comparison of assessment of native coronary arteries by standard versus three-dimensional coronary angiography. Am J Cardiol 102:272CrossRefGoogle Scholar
  2. 2.
    Antiga L, Ene-Iordache B, Caverni L, Cornalba GP, Remuzzi A (2002) Geometric reconstruction for computational mesh generation of arterial bifurcations from CT angiography. Comput Med Imaging Graph 26:227CrossRefGoogle Scholar
  3. 3.
    Antiga L, Ene-Iordache B, Remuzzi A (2003) Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Trans Med Imaging 22:674CrossRefGoogle Scholar
  4. 4.
    Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman D (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097CrossRefGoogle Scholar
  5. 5.
    Baghdadi L, Steinman DA, Ladak HM (2005) Template-based finite-element mesh generation from medical images. Comput Methods Programs Biomed 77:11CrossRefGoogle Scholar
  6. 6.
    Boutsianis E, Dave H, Frauenfelder T, Poulikakos D, Wildermuth S, Turina M, Ventikos Y, Zund G (2004) Computational simulation of intracoronary flow based on real coronary geometry. Eur J Cardiothorac Surg 26:248CrossRefGoogle Scholar
  7. 7.
    Carlier SG, van Damme LCA, Blommerde CP, Wentzel JJ, van Langehove G, Verheye S, Kockx MM, Knaapen MWM, Cheng C, Gijsen F, Duncker DJ, Stergiopulos N, Slager CJ, Serruys PW, Krams R (2003) Augmentation of wall shear stress inhibits neointimal hyperplasia after stent implantation—inhibition through reduction of inflammation? Circulation 107:2741CrossRefGoogle Scholar
  8. 8.
    Frauenfelder T, Boutsianis E, Schertler T, Husmann L, Leschka S, Poulikakos D, Marincek B, Alkadhi H (2007) In vivo flow simulation in coronary arteries based on computed tomography datasets: feasibility and initial results. Eur Radiol 17:1291CrossRefGoogle Scholar
  9. 9.
    Goubergrits L, Wellnhofer E, Kertzscher U, Affeld K, Petz C, Hege H-C (2009) Coronary artery WSS profiling using a geometry reconstruction based on biplane angiography. Ann Biomed Eng 37:682CrossRefGoogle Scholar
  10. 10.
    Katritsis D, Kaiktsis L, Chaniotis A, Pantos J, Efstathopoulos EP, Marmarelis V (2007) Wall shear stress: theoretical considerations and methods of measurement. Prog Cardiovasc Dis 49:307CrossRefGoogle Scholar
  11. 11.
    Lee SW, Antiga L, Spence JD, Steinman DA (2008) Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39:2341CrossRefGoogle Scholar
  12. 12.
    Longest PW, Vinchurkar S (2007) Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Med Eng Phys 29:350CrossRefGoogle Scholar
  13. 13.
    Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035CrossRefGoogle Scholar
  14. 14.
    Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, De Cobelli F, Del Maschio A, Montevecchi FM, Redaelli A (2009) In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann Biomed Eng 37:516CrossRefGoogle Scholar
  15. 15.
    Nichols WW, O’Rourke MF (2005) McDonald’s blood flow in arteries, 5th edn. Edward Arnold, LondonGoogle Scholar
  16. 16.
    Peiro J, Sherwin S, Giordana S (2008) Automatic reconstruction of a patient-specific high-order surface representation and its application to mesh generation for CFD calculations. Med Biol Eng Comput 46:1069CrossRefGoogle Scholar
  17. 17.
    Pijls NHJ, DeBruyne B, Peels K, VanderVoort PH, Bonnier H, Bartunek J, Koolen JJ (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334:1703CrossRefGoogle Scholar
  18. 18.
    Ponzini R, Lemma M, Morbiducci U, Montevecchi FM, Redaelli A (2008) Doppler derived quantitative flow estimate in coronary artery bypass graft: a computational multiscale model for the evaluation of the current clinical procedure. Med Eng Phys 30:809CrossRefGoogle Scholar
  19. 19.
    Prakash S, Ethier CR (2001) Requirements for mesh resolution in 3D computational hemodynamics. J Biomech Eng 123:134CrossRefGoogle Scholar
  20. 20.
    Preim B, Oeltze S (2008) 3D visualization of vasculature: an overview. In: Linsen L, Hagen H, Hamann B (eds) Visualization in medicine and life sciences. Springer-Verlag, Berlin, p 19Google Scholar
  21. 21.
    Soulis JV, Farmakis TM, Giannoglou GD, Louridas GE (2006) Wall shear stress in normal left coronary artery tree. J Biomech 39:742CrossRefGoogle Scholar
  22. 22.
    Soulis JV, Giannoglou GD, Papaioannou V, Parcharidis GE, Louridas GE (2008). Low-density lipoprotein concentration in the normal left coronary artery tree. Biomed Eng Online 7Google Scholar
  23. 23.
    Starmans-Kool MJ, Stanton AV, Zhao SZ, Xu XY, Thom SAM, Hughes AD (2002) Measurement of hemodynamics in human carotid artery using ultrasound and computational fluid dynamics. J Appl Physiol 92:957Google Scholar
  24. 24.
    Steinman DA (2002) Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann Biomed Eng 30:483CrossRefGoogle Scholar
  25. 25.
    Steinman DA, Vorp DA, Ethier CR (2003) Computational modeling of arterial biomechanics: insights into pathogenesis and treatment of vascular disease. J Vasc Surg 37:1118CrossRefGoogle Scholar
  26. 26.
    Vinchurkar S, Longest PW (2008) Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Comput Fluids 37:317CrossRefGoogle Scholar
  27. 27.
    Wellnhofer E, Goubergrits L, Kertzscher U, Affeld K (2006). In vivo coronary flow profiling based on biplane angiograms: influence of geometric simplifications on the three-dimensional reconstruction and wall shear stress calculation. Biomed Eng Online 5Google Scholar
  28. 28.
    Wellnhofer E, Goubergrits L, Kertzscher U, Affeld K, Fleck E (2009) Novel non-dimensional approach to comparison of wall shear stress distributions in coronary arteries of different groups of patients. Atherosclerosis 202:483CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2010

Authors and Affiliations

  • Gianluca De Santis
    • 1
    Email author
  • Peter Mortier
    • 1
  • Matthieu De Beule
    • 1
  • Patrick Segers
    • 1
  • Pascal Verdonck
    • 1
  • Benedict Verhegghe
    • 1
  1. 1.Biommeda, IBiTechGhent UniversityGhentBelgium

Personalised recommendations