Medical & Biological Engineering & Computing

, Volume 48, Issue 4, pp 351–359 | Cite as

A novel online method to monitor autonomic nervous activity based on arterial wall impedance and heart rate variability

  • Abdugheni Kutluk
  • Toshio Tsuji
  • Teiji Ukawa
  • Ryuji Nakamura
  • Noboru Saeki
  • Masao Yoshizumi
  • Masashi Kawamoto
Original Article


This paper proposes a new method of evaluating autonomic nervous activity using the mechanical impedance of arterial walls and heart rate variability. The cardiovascular system is indispensable to life maintenance functions, and homeostasis is maintained by the autonomic nervous system. Accordingly, it is very important to be able to make diagnosis based on autonomic nervous activity within the body’s circulation. The proposed method was evaluated in surgical operations; the mechanical impedance of the arterial wall was estimated from arterial blood pressure and a photoplethysmogram, and heart rate variability was estimated using electrocardiogram R–R interval spectral analysis. In this paper, we monitored autonomic nervous system activity using the proposed system during endoscopic transthoracic sympathetic block surgery in eight patients with hyperhidrosis. The experimental results indicated that the proposed system can be used to estimate autonomic nervous activity in response to events during operations.


Mechanical impedance Autonomic nerves Arterial wall Heart rate variability Photoplethysmogram 



This work was supported by the Regional Innovation Creating System Enterprise for Ministry of Economy, Trade and Industry (RIETI) of Japan.


  1. 1.
    Akselrod S, Gordon D, Ubel FA et al (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 10:220–222CrossRefGoogle Scholar
  2. 2.
    Armentano RL, Simon A, Levenson J et al (1991) Mechanical pressure versus intrinsic effects of hypertension on large arteries in humans. Hypertension 18(5):657–664Google Scholar
  3. 3.
    Assalia A, Bahouth H, Ilivitzki A et al (2007) Thoracoscopic sympathectomy for primary palmar hyperhidrosis: resection versus transection—a prospective trial. World J Surg 31:1976–1979. doi: 10.1007/s00268-007-9160-x CrossRefGoogle Scholar
  4. 4.
    Bank AJ, Wilson RF, Kubo SH et al (1995) Direct effects of smooth muscle relaxation and contraction on in vivo human brachial artery elastic properties. Circ Res 77:1008–1016Google Scholar
  5. 5.
    Barra JG, Armentano RL, Levenson J et al (1993) Assessment of smooth muscle contribution to descending thoracic aortic elastic mechanics in conscious dogs. Circ Res 73:1040–1050Google Scholar
  6. 6.
    Bootsma M, Swenne CA, Van Bolhuis HH et al (1994) Heart rate and heart rate variability as indexes of sympathovagal balance. Am J Physiol 266:1565–1571Google Scholar
  7. 7.
    Cerutti S, Goldberger AL, Yamamoto Y (2006) Recent advances in heart rate variability signal processing and interpretation. IEEE Trans Biomed Eng 53(1):1–3. doi: 10.1109/TBME.2005.859777 CrossRefGoogle Scholar
  8. 8.
    Drott C, Gothberg G, Claes G (1995) Endoscopic transthoracic sympathectomy: an efficient and safe method for the treatment of hyperhidrosis. J Am Acad Dermatol 33(1):78–81CrossRefGoogle Scholar
  9. 9.
    Fujiwara Y, Kurokawa S, Asakura Y et al (2007) Correlation between heart rate variability and haemodynamic fluctuation during induction of general anaesthesia: comparison between linear and non-linear analysis. Anaesthesia 62:117–121. doi: 10.1111/j.1365-2044.2006.04933.x CrossRefGoogle Scholar
  10. 10.
    Greenfield JC, Patel DJ (1962) Relation between pressure and diameter in the ascending aorta of man. Circ Res 10:778–781Google Scholar
  11. 11.
    Haney MF, Wiklund U (2007) Can heart rate variability become a screening tool for anesthesia-related hypotension? Acta Anaesthesiol Scand 51(10):1289–1291. doi: 10.1111/j.1399-6576.2007.01517.x CrossRefGoogle Scholar
  12. 12.
    Hanss R, Bein B, Weseloh H et al (2006) Heart rate variability predicts severe hypotension after spinal anesthesia. Anesthesiology 104:537–545CrossRefGoogle Scholar
  13. 13.
    Hidaka S, Kawamoto M, Kurita S, Yuge O (2005) Comparison of the effects of propofol and midazolam on the cardiovascular autonomic nervous system during combined spinal and epidural anesthesia. J Clin Anesth 17(1):36–43. doi: 10.1016/j.jclinane.2004.03.012 CrossRefGoogle Scholar
  14. 14.
    HRV (1996) Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065Google Scholar
  15. 15.
    Huang HH, Lee YH, Chan HL et al (2008) Using a short-term parameter of heart rate variability to distinguish awake from isoflurane anesthetic states. Med Biol Eng Comput 46(10):977–984. doi: 10.1007/s11517-008-0342-y CrossRefGoogle Scholar
  16. 16.
    Ihlen EA (2009) A comparison of two Hilbert spectral analyses of heart rate variability. Med Biol Eng Comput 47(10):1035–1044. doi: 10.1007/s11517-009-0500-x CrossRefGoogle Scholar
  17. 17.
    Kanaya N, Hirata N, Kurosawa S, Nakayama M, Namiki A (2003) Differential effects of propofol and sevoflurane on heart rate variability. Anesthesiology 98:34–40CrossRefGoogle Scholar
  18. 18.
    Katayama K, Shimoda M, Maeda J, Takemiya T (1998) Endurance Exercise training increases peripheral vascular response in human fingers. Jpn J Physiol 48(5):365–371CrossRefGoogle Scholar
  19. 19.
    Kato R, Sato J, Iuchi T, Higuchi Y (1999) Quantitative determination of arterial wall mechanics with pulse oximetric finger plethysmography. J Anesthesia 13:197–204CrossRefGoogle Scholar
  20. 20.
    Knuttgen D, Trojan S, Weber M et al (2005) Pre-operative measurement of heart rate variability in diabetics: a method to estimate blood pressure stability during anaesthesia induction. Anaesthesist 54:442–449. doi: 10.1007/s00101-005-0837-y CrossRefGoogle Scholar
  21. 21.
    Kumazawa T, Yugi O, Furuya H (2002) Standard anesthesia. Igaku-Shoin Press, Tokyo, pp 220–231 (in Japanease)Google Scholar
  22. 22.
    Malliani A, Pagani M, Lombardi F et al (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84:482–492Google Scholar
  23. 23.
    Nichols WW, O’Rourke MF (1998) McDonald’s blood flow in arteries: theoretical experimental and clinical principles, 4th edn. Arnold, LondonGoogle Scholar
  24. 24.
    Ohtomo N, Tanaka Y (1994) New method of time series analysis and ‘MemCalc’. A recent advance in time series analysis by maximum entropy method. Hokkaido University Press, Sapporo, pp 11–29Google Scholar
  25. 25.
    Parati G, Mancia G, Rienzo MD et al (2006) Point-counterpoint: cardiovascular variability is/is not an index of autonomic control of the circulation. J Appl Physiol 101(2):676–682. doi: 10.1152/japplphysiol.00446.2006 CrossRefGoogle Scholar
  26. 26.
    Rajendra AU, Paul JK, Kannathal N et al (2006) Heart rate variability: a review. Med Biol Eng Comput 44(12):1031–1051. doi: 10.1007/s11517-006-0119-0 CrossRefGoogle Scholar
  27. 27.
    Saeki N, Kawamoto M, Yuge O (2001) Quantitative view of peripheral circulation. In: 30th international educational and scientific symposium of the society of critical care medicine. San Francisco, USAGoogle Scholar
  28. 28.
    Sakane A, Tsuji T, Tanaka Y, Saeki N, Kawamoto M (2003) Estimating arterial wall impedance using a plethysmogram. In: Proceedings of the 29th annual conference of the IEEE industrial electronics society (IECON 03), vol 1. pp 580–585. doi: 10.1109/IECON.2003.1280044
  29. 29.
    Sakane A, Tsuji T, Saeki N, Kawamoto M (2004) Discrimination of vascular conditions using a probabilistic neural network. J Robotics Mechatron 16(2):138–145Google Scholar
  30. 30.
    Sawada Y, Ohtomo N, Tanaka Y et al (1997) New technique for time series analysis combining the maximum entropy method and non-linear least squares method: its value in heart rate variability analysis. Med Biol Eng Comput 35:318–322CrossRefGoogle Scholar
  31. 31.
    Suzuki J, Maeda J, Takemiya T (1994) Analysis of microvascular responses in the finger to changes in arm position during cold water stimulation. Jpn J Physiol 44(2):181–191CrossRefGoogle Scholar
  32. 32.
    Tan BH, Shimizu H, Hiromoto K et al (2003) Wavelet transform analysis of heart rate variability to assess the autonomic changes associated with spontaneous coronary spasm of variant angina. J Electrocardiol 36(2):117–124. doi: 10.1054/jelc.2003.50022 CrossRefGoogle Scholar
  33. 33.
    Taylor JA, Eckberg DL (1996) Fundamental relations between short-term R-R interval and arterial pressure oscillations in humans. Circulation 93:1527–1532Google Scholar
  34. 34.
    Tsuji T, Morasso PG, Goto K, Ito K (1995) Human hand impedance characteristics during maintained posture. Biol Cybern 72(6):475–485MATHCrossRefGoogle Scholar
  35. 35.
    Win NN, Fukayama H, Kohase H, Umino M (2005) The different effects of intravenous propofol and midazolam sedation on hemodynamic and heart rate variability. Anesth Analg 101:97–102. doi: 10.213/01.ANE.0000156204.89879.5C CrossRefGoogle Scholar
  36. 36.
    Yamamoto Y, Hughson RL, Peterson JC (1991) Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol 71:1136–1142Google Scholar
  37. 37.
    Zhang R, Iwasaki K, Zuckerman JH et al (2002) Mechanism of blood pressure and R-R variability insights from ganglion blockade in humans. J Physiol 543(1):337–348CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2010

Authors and Affiliations

  • Abdugheni Kutluk
    • 1
  • Toshio Tsuji
    • 1
  • Teiji Ukawa
    • 2
  • Ryuji Nakamura
    • 3
  • Noboru Saeki
    • 3
  • Masao Yoshizumi
    • 3
  • Masashi Kawamoto
    • 3
  1. 1.Graduate School of EngineeringHiroshima UniversityHigashi, HiroshimaJapan
  2. 2.Nihon Kohden CorporationTokyoJapan
  3. 3.Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan

Personalised recommendations