Inter-operator reliability and prediction bands of a novel protocol to measure the coordinated movements of shoulder-girdle and humerus in clinical settings

  • Pietro Garofalo
  • Andrea Giovanni Cutti
  • Maria Vittoria Filippi
  • Stefano Cavazza
  • Alberto Ferrari
  • Angelo Cappello
  • Angelo Davalli
Special Issue - Original Article

Abstract

A clinical motion analysis protocol was developed to measure the coordinated movements of shoulder-girdle and humerus (girdle-humeral rhythm—GD-H-R) during humerus flexion–extension (HFE) and ab-adduction (HAA), through an optoelectronic system. In particular, the protocol describes the GD-H-R with 2 angle–angle plots for each movement: girdle elevation–depression and protraction–retraction vs HFE, and vs HAA. Each of these plots is further divided in two subplots, one for the upward and one for the downward phases of the movement. By involving 11 participants and 2 operators, we measured the protocol’s inter-operator reliability which ranged from very-good to excellent depending on the angle–angle plot (median values of the inter-operator coefficient of multiple correlation for the angle–angle plots higher than 0.94). We then computed the subjects’ average control patterns, together with statistically meaningful prediction bands. ±1SD confidence bands were also computed and their width ranged from ±0.5° to ±4.6°. Based on these results we could conclude that the method is robust and able to identify even limited differences in the GD-H-R.

Keywords

Shoulder Shoulder-girdle Motion analysis Inter-operator reliability Prediction bands 

Supplementary material

11517_2009_454_MOESM1_ESM.jpg (189 kb)
Example of data collection for the two-way repeated measures ANOVA performed to compute the prediction bands. a) ED angles at 100 degrees of FE during 4 repetitions (trials) of HFE, for each subject; b) data table for ANOVA analysis. Operator and Repetition are the two factors with 2 and 4 levels, respectively (JPEG 188 kb)
11517_2009_454_MOESM2_ESM.doc (1.7 mb)
Supplementary material 1 (DOC 1717 kb)
11517_2009_454_MOESM3_ESM.xls (84 kb)
Supplementary material 2 (XLS 84 kb)

Supplementary material 3 (AVI 1558 kb)

References

  1. 1.
    Bland M (2000) An introduction to medical statistics. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Borstad JD, Ludewig PM (2002) Comparison of scapular kinematics between elevation and lowering of the arm in the scapular plane. Clin Biomech (Bristol, Avon) 17:650–659. doi: 10.1016/S0268-0033(02)00136-5 CrossRefGoogle Scholar
  3. 3.
    Cappozzo A, Catani F, Della Croce U et al (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol, Avon) 10(4):171–178CrossRefGoogle Scholar
  4. 4.
    Charlton IW (2003) A model for the prediction of the forces at the glenohumeral joint. Ph.D. thesis, Newcastle University, Newcastle upon TyneGoogle Scholar
  5. 5.
    Chiari L, Della Croce U, Leardini A et al (2005) Human movement analysis using stereophotogrammetry. Part 2: instrumental errors. Gait Posture 21:197–211. doi: 10.1016/j.gaitpost.2004.04.004 CrossRefGoogle Scholar
  6. 6.
    Cutti AG, Paolini G, Troncossi M, Cappello A, Davalli A (2005) Soft tissue artefact assessment in humeral axial rotation. Gait Posture 21(3):341–349CrossRefGoogle Scholar
  7. 7.
    Cutti AG, Garofalo P, Filippi MV et al (2006) The evolution of compensation strategies in two patients with shoulder instability: a comparative study through quantitative motion analysis. In: Proceedings of ISG 2006, ChicagoGoogle Scholar
  8. 8.
    De Groot JH (1997) The variability of shoulder motions recorded by means of palpation. Clin Biomech (Bristol, Avon) 12(7–8):461–472. doi: 10.1016/S0268-0033(97)00031-4 Google Scholar
  9. 9.
    Finch E, Brooks D, Statford PW et al (2002) Physical rehabilitation outcome measures. Lippincott Williams & Wilkins, TorontoGoogle Scholar
  10. 10.
    Garofalo P, Cutti AG, Filippi MV et al (2008) Limitations of the constant scale in the assessment of shoulder compensatory strategies. Gait Posture 28(Suppl 1):S29. doi: 10.1016/j.gaitpost.2007.12.055 CrossRefGoogle Scholar
  11. 11.
    Hopkins WG (2000) Measures of reliability in sports medicine and science. Sports Med 30(1):1–15. doi: 10.2165/00007256-200030010-00001 CrossRefGoogle Scholar
  12. 12.
    Johnson GR, Stuart PR, Mitchell S (1993) A method for the measurement of three dimensional scapular movement. Clin Biomech (Bristol, Avon) 8(5):269–273. doi: 10.1016/0268-0033(93)90037-I CrossRefGoogle Scholar
  13. 13.
    Kadaba MP, Ramakrishnan HK, Wootten ME et al (1989) Repeatability of kinematic kinetic and electromyographic data in normal adult gait. J Orthop Res 7:849–860. doi: 10.1002/jor.1100070611 CrossRefGoogle Scholar
  14. 14.
    Karduna AR, McClure PW, Michener LA et al (2001) Dynamic measurements of three-dimensional scapular kinematics: a validation study. J Biomech Eng 123(2):184–190. doi: 10.1115/1.1351892 CrossRefGoogle Scholar
  15. 15.
    Kavanagh JJ, Morrison S, James DA et al (2006) Reliability of segmental accelerations measured using a new wireless gait analysis system. J Biomech 39:2863–2872. doi: 10.1016/j.jbiomech.2005.09.012 CrossRefGoogle Scholar
  16. 16.
    Lee RYW, Laprade J, Fung EHK (2003) A real-time gyroscopic system for three-dimensional measurement of lumbar spine motion. Med Eng Phys 25:817–824. doi: 10.1016/S1350-4533(03)00115-2 CrossRefGoogle Scholar
  17. 17.
    Lenhoff MW, Santner TJ, Otis JC et al (1999) Bootstrap prediction and confidence bands: a superior statistical method for analysis of gait data. Gait Posture 9:10–17. doi: 10.1016/S0966-6362(98)00043-5 CrossRefGoogle Scholar
  18. 18.
    Ludewig PM, Cook TM (2000) Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther 80(3):276–291Google Scholar
  19. 19.
    Magermans DJ, Chadwick EKJ, Veeger HEJ et al (2005) Requirements for upper extremity motions during activities of daily living. Clin Biomech (Bristol, Avon) 20(6):591–599. doi: 10.1016/j.clinbiomech.2005.02.006 CrossRefGoogle Scholar
  20. 20.
    Marchese SS, Johnson GR (2000) Non-invasive measurement of the kinematics of the clavicle. In: Proceedings of the third conference of the international shoulder group. Delft University Press, Newcastle upon-Tyne, pp 61–65. ISBN 90-407-2268-4Google Scholar
  21. 21.
    Mayagoitia RE, Nene AV, Veltink PH (2002) Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. J Biomech 35:537–542. doi: 10.1016/S0021-9290(01)00231-7 CrossRefGoogle Scholar
  22. 22.
    McClure PW, Michener LA, Sennett BJ, Karduna AR (2001) Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. J Shoulder Elbow Surg 10(3):269–277. doi: 10.1067/mse.2001.112954 CrossRefGoogle Scholar
  23. 23.
    Mell AG, LaScalza S, Guffey P et al (2005) Effect of rotator cuff pathology on shoulder rhythm. J Shoulder Elbow Surg 14(1 Suppl S):58S–64SCrossRefGoogle Scholar
  24. 24.
    Meskers CG, Vermeulen HM, de Groot JH et al (1998) 3D shoulder position measurements using a six-degree-of-freedom electromagnetic tracking device. Clin Biomech (Bristol, Avon) 13(4–5):280–292. doi: 10.1016/S0268-0033(98)00095-3 CrossRefGoogle Scholar
  25. 25.
    Meskers CG, van de Sande MA, de Groot JH (2007) Comparison between tripod and skin-fixed recording of scapular motion. J Biomech 40(4):941–946. doi: 10.1016/j.jbiomech.2006.02.011 CrossRefGoogle Scholar
  26. 26.
    Mills PM, Morrison S, Lloyd DG et al (2007) Repeatability of 3D gait kinematics obtained from an electromagnetic tracking system during treadmill locomotion. J Biomech 40:1504–1511. doi: 10.1016/j.jbiomech.2006.06.017 CrossRefGoogle Scholar
  27. 27.
    Murray I, Johnson GR (2000) Definition of marker positions and technical frames for studying the kinematics of the shoulder. In: Proceedings of the third conference of the international shoulder group. Delft University Press, Newcastle upon-Tyne, pp 47–51. ISBN 90-407-2268-4Google Scholar
  28. 28.
    Pascoal AG, van der Helm FF, Pezarat Correia P et al (2000) Effects of different arm external loads on the scapulo–humeral rhythm. Clin Biomech (Bristol, Avon) 15(Suppl 1):S21–S24. doi: 10.1016/S0268-0033(00)00055-3 CrossRefGoogle Scholar
  29. 29.
    Rockwood CA, Matsen FAIII, Wirth MA et al (2004) The shoulder. Saunders, ReadfieldGoogle Scholar
  30. 30.
    Roy JS, Moffet H, Hébert LJ, St-Vincent G, McFadyen BJ (2007) The reliability of three-dimensional scapular attitudes in healthy people and people with shoulder impingement syndrome. BMC Musculoskelet Disord 8:49CrossRefGoogle Scholar
  31. 31.
    Schwartz MH, Trost JP, Wervey RA (2004) Measurement and management of errors in quantitative gait data. Gait Posture 20:196–203. doi: 10.1016/j.gaitpost.2003.09.011 CrossRefGoogle Scholar
  32. 32.
    Stagni R, Fantozzi S, Cutti AG et al (2008) Kinematic analysis techniques and their application in biomechanics. In: Biomechanical systems technology, chap 2, vol 3. World Scientific, Singapore. ISBN 978-981-270-983-7, http://www.worldscibooks.com/medsci/6506.html
  33. 33.
    Stergiou N (2003) Innovative analyses of human movement. Human Kinetics Publishers, ChampaignGoogle Scholar
  34. 34.
    van Andel CJ, Wolterbeek N, Doorenbosch CA et al (2008) Complete 3D kinematics of upper extremity functional tasks. Gait Posture 27(1):120–127. doi: 10.1016/j.gaitpost.2007.03.002 CrossRefGoogle Scholar
  35. 35.
    van der Helm FF, Pronk GM (1995) Three-dimensional recording and description of motions of the shoulder mechanism. J Biomech Eng 117(1):27–40. doi: 10.1115/1.2792267 CrossRefGoogle Scholar
  36. 36.
    Veeger HE, van der Helm FCT, Rozendal RH (1993) Orientation of the scapula in a simulated wheelchair push. Clin Biomech (Bristol, Avon) 8(2):81–90. doi: 10.1016/S0268-0033(93)90037-I CrossRefGoogle Scholar
  37. 37.
    Weir JP (2005) Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19(1):231–240. doi: 10.1519/15184.1 CrossRefMathSciNetGoogle Scholar
  38. 38.
    Wu G, van der Helm FC, Veeger HE et al (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human motion—part II: shoulder, elbow, wrist and hand. J Biomech 38(5):981–992. doi: 10.1016/j.jbiomech.2004.05.042 CrossRefGoogle Scholar
  39. 39.
    Yavuzer G, Oken O, Elhan A et al (2008) Repeatability of lower limb three-dimensional kinematics in patients with stroke. Gait Posture 27(1):31–35. doi: 10.1016/j.gaitpost.2006.12.016 CrossRefGoogle Scholar
  40. 40.
    Zoubir AM, Boashash B (1998) The bootstrap and its application in signal processing. IEEE Signal Process Mag 15(1):56–76. doi: 10.1109/79.647043 CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2009

Authors and Affiliations

  • Pietro Garofalo
    • 1
    • 2
  • Andrea Giovanni Cutti
    • 1
  • Maria Vittoria Filippi
    • 1
  • Stefano Cavazza
    • 3
  • Alberto Ferrari
    • 1
    • 2
  • Angelo Cappello
    • 2
  • Angelo Davalli
    • 1
  1. 1.I.N.A.I.L. Prostheses CenterVigorso di Budrio, BolognaItaly
  2. 2.Department of Electronics, Computer Science and SystemsUniversity of BolognaBolognaItaly
  3. 3.Ospedale San GiorgioFerraraItaly

Personalised recommendations