Advertisement

Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis

  • Houman Zahedmanesh
  • Caitríona Lally
Original Article

Abstract

Many clinical studies, including the ISAR-STEREO trial, have identified stent strut thickness as an independent predictor of in-stent restenosis where thinner struts result in lower restenosis than thicker struts. The aim of this study was to more conclusively identify the mechanical stimulus for in-stent restenosis using results from such clinical trials as the ISAR-STEREO trial. The mechanical environment in arteries stented with thin and thicker strut stents was investigated using numerical modelling techniques. Finite element models of the stents used in the ISAR-STEREO clinical trial were developed and the stents were deployed in idealised stenosed vessel geometries in order to compare the mechanical environment of the vessel for each stent. The stresses induced within the stented vessels by these stents were compared to determine the level of vascular injury caused to the artery by the stents with different strut thickness. The study found that when both stents were expanded to achieve the same initial maximum stent diameter that the thinner strut stent recoiled to a greater extent resulting in lower luminal gain but also lower stresses in the vessel wall, which is hypothesised to be responsible for the lower restenosis outcome. This study supports the hypothesis that arteries develop restenosis in response to injury, where high vessel stresses are a good measure of that injury. This study points to a critical stress level in arteries, above which an aggressive healing response leads to in-stent restenosis in stented vessels. Stents can be designed to reduce stresses in this range in arteries using preclinical tools such as numerical modelling.

Keywords

Coronary stent design Finite element method Restenosis Vascular injury Arterial wall mechanics 

References

  1. 1.
    Bedoya J, Meyer CA, Timmins LH, Moreno MR, Moore JE Jr (2006) Effects of stent design parameters on normal artery wall mechanics. J Biomech Eng 128:757–765CrossRefGoogle Scholar
  2. 2.
    Briguori C, Sarais C, Pagnotta P et al (2002) In-stent restenosis in small coronary arteries: impact of strut thickness. J Am Coll Cardiol 40:403–409. doi: 10.1016/S0735-1097(02)01989-7 CrossRefGoogle Scholar
  3. 3.
    de Quadros AS, Sarmento-Leite R, Gottschall CA, Silva GV, Perin EC (2006) Hyperexpansion of coronary stents and clinical outcomes. Tex Heart Inst J 33:437–444Google Scholar
  4. 4.
    Duraiswamy N, Schoephoerster RT, Moreno MR, Moore JE Jr (2007) Stented artery flow patterns and their effects on the artery wall. Annu Rev Fluid Mech 39:357–382. doi: 10.1146/annurev.fluid.39.050905.110300 CrossRefMathSciNetGoogle Scholar
  5. 5.
    Early M, Lally C, Prendergast PJ, Kelly DJ (2008) Stresses in peripheral arteries following stent placement: a finite element analysis. Comput Methods Biomech Biomed Engin (in press)Google Scholar
  6. 6.
    Fischman DL, Leon MB, Baim DS (1994) A randomized comparison of coronary-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 331:496–501. doi: 10.1056/NEJM199408253310802 CrossRefGoogle Scholar
  7. 7.
    Grewe PH, Deneke T, Machraoui A, Barmeyer J, Muller K-M (2000) Acute and chronic tissue response to coronary stent implantation: pathologic findings in human specimens. J Am Coll Cardiol 35:157–163. doi: 10.1016/S0735-1097(99)00486-6 CrossRefGoogle Scholar
  8. 8.
    Hara H, Nakamura M, Palmaz JC, Schwartz RS (2006) Role of stent design and coatings on restenosis and thrombosis. Adv Drug Deliv Rev 58:377–386. doi: 10.1016/j.addr.2006.01.022 CrossRefGoogle Scholar
  9. 9.
    Holzapfel GA, Stadler M, Gasser TC (2005) Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J Biomech Eng 127:166–180CrossRefGoogle Scholar
  10. 10.
    Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289:H2048–H2058. doi: 10.1152/ajpheart.00934.2004 CrossRefGoogle Scholar
  11. 11.
    Hwang C-W, Wu D, Edelman ER (2001) Physiological transport forces govern drug distribution for stent-based delivery. Circulation 104:600–605. doi: 10.1161/hc3101.092214 CrossRefGoogle Scholar
  12. 12.
    Kastrati A, Mehilli J, Dirschinger J et al (2001) intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103:2816–2821Google Scholar
  13. 13.
    Kim J, Kang Y-H, Choi H-H, Hwang S-M, Kang B-S (2002) Comparison of implicit and explicit finite-element methods for the hydroforming process of an automobile lower arm. Int J Adv Manuf Technol 20:407–413. doi: 10.1007/s001700200170 CrossRefGoogle Scholar
  14. 14.
    Lally C, Dolan F, Prendergast PJ (2005) Cardiovascular stent design and vessel stresses: a finite element analysis. J Biomech 38:1574–1581. doi: 10.1016/j.jbiomech.2004.07.022 CrossRefGoogle Scholar
  15. 15.
    Liang DK, Yang DZ, Qi M, Wang WQ (2005) Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. Int J Cardiol 104:314–318. doi: 10.1016/j.ijcard.2004.12.033 CrossRefGoogle Scholar
  16. 16.
    Loree HM, Grodzinsky AJ, Park SY, Gibson LJ, Lee RT (1994) Static circumferential tangential modulus of human atherosclerotic tissue. J Biomech 27:195–204. doi: 10.1016/0021-9290(94)90209-7 CrossRefGoogle Scholar
  17. 17.
    McClean R, Eigler NL (2002) Stent design: implications for restenosis. Rev Cardiovasc Med 3:S16–S22. doi: 10.1016/S1522-1865(02)00137-3 CrossRefGoogle Scholar
  18. 18.
    Migliavacca F, Petrini L, Colombo M, Auricchio F, Pietrabissa R (2002) Mechanical behavior of coronary stents investigated through the finite element method. J Biomech 35:803–811. doi: 10.1016/S0021-9290(02)00033-7 CrossRefGoogle Scholar
  19. 19.
    Morrow D, Sweeney C, Birney YA et al (2005) Cyclic strain inhibits notch receptor signaling in vascular smooth muscle cells in vitro. Circ Res 96:567–575. doi: 10.1161/01.RES.0000159182.98874.43 CrossRefGoogle Scholar
  20. 20.
    Morton AC, Crossman D, Gunn J (2004) The influence of physical stent parameters upon restenosis. Pathol Biol 52:196–205. doi: 10.1016/j.patbio.2004.03.013 CrossRefGoogle Scholar
  21. 21.
    Murphy BP, Savage P, McHugh PE, Quinn DF (2003) The stress–strain behaviour of coronary stent struts is size dependent. Ann Biomed Eng 31:686–691. doi: 10.1114/1.1569268 CrossRefGoogle Scholar
  22. 22.
    Ogden RW (1972) Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A Math Phys Sci 326:565–584. doi: 10.1098/rspa.1972.0026 MATHCrossRefGoogle Scholar
  23. 23.
    Pache J, Kastrati A, Mehilli J et al (2003) Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol 41:1283–1288. doi: 10.1016/S0735-1097(03)00119-0 CrossRefGoogle Scholar
  24. 24.
    Serruys PW, Kutryk MJB (1998) Handbook of coronary stents, 2nd edn. Martin Dunitz Ltd, LondonGoogle Scholar
  25. 25.
    Serruys PW, Kutryk MJB (2000) Handbook of coronary stents, 3rd edn. Martin Dunitz Ltd, LondonGoogle Scholar
  26. 26.
    Timmins LH, Moreno MR, Meyer CA, Criscione JC, Rachev A, Moore JE Jr (2007) Stented artery biomechanics and device design optimization. Med Biol Eng Comput 45(5):505–513. doi: 10.1007/s11517-007-0180-3 CrossRefGoogle Scholar
  27. 27.
    Toner D, Dolan F, Lally C (2007) Validation of numerical models of stent expansion using an in-vitro compliant artery model. In: Proceedings of bioengineering in Ireland (13) and the 27th meeting of the Northern Ireland Biomedical Engineering Society, Enniskillen, p 61Google Scholar
  28. 28.
    van Andel CJ, Pistecky PV, Borst C (2003) Mechanical properties of porcine and human arteries: implications for coronary anastomotic connectors. Ann Thorac Surg 76:58–65. doi: 10.1016/S0003-4975(03)00263-7 CrossRefGoogle Scholar
  29. 29.
    Vernhet H, Demaria R, Juan JM, Oliva-Lauraire MC, Senac JP, Dauzat M (2001) Changes in wall mechanics after endovascular stenting in the rabbit aorta: comparison of three stent designs. AJR Am J Roentgenol 176:803–807Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2009

Authors and Affiliations

  1. 1.School of Mechanical and Manufacturing EngineeringDublin City UniversityDublin 9Ireland

Personalised recommendations