Patient-specific flow analysis of brain aneurysms at a single location: comparison of hemodynamic characteristics in small aneurysms

  • Aichi Chien
  • Satoshi Tateshima
  • Marcelo Castro
  • James Sayre
  • Juan Cebral
  • Fernando Viñuela
Special Issue - Original Article


The purpose of this study is to examine and compare the hemodynamic characteristics of small aneurysms at the same anatomical location. Six internal carotid artery-ophthalmic artery aneurysms smaller than 10 mm were selected. Image-based computational fluid dynamics (CFD) techniques were used to simulate aneurysm hemodynamics. Flow velocity and wall shear stress (WSS) were also quantitatively compared, both in absolute value and relative value using the parent artery as a baseline. We found that flow properties were similar in ruptured and unruptured small aneurysms. However, the WSS was lower at the aneurysm site in unruptured aneurysms and higher in ruptured aneurysms (P < 0.05). Hemodynamic analyses at a single location with similar size enabled us to directly compare the hemodynamics and clinical presentation of brain aneurysms. The results suggest that the WSS in an aneurysm sac can be an important hemodynamic parameter related to the mechanism of brain aneurysm growth and rupture.


Flow analysis Hemodynamics Brain aneurysm 


  1. 1.
    Anayiotos AS, Jones SA, Giddens DP et al (1994) Shear stress at a compliant model of the human carotid bifurcation. J Biomech Eng 116:98–106. doi: 10.1115/1.2895710 CrossRefGoogle Scholar
  2. 2.
    Beck J, Rohde S, el Beltagy M et al (2003) Difference in configuration of ruptured and unruptured intracranial aneurysms determined by biplanar digital subtraction angiography. Acta Neurochir (Wien) 145:861–865. doi: 10.1007/s00701-003-0124-0 discussion 865CrossRefGoogle Scholar
  3. 3.
    Burleson AC, Strother CM, Turitto VT (1995) Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery 37:774–782. doi: 10.1097/00006123-199510000-00023 discussion 782–774CrossRefGoogle Scholar
  4. 4.
    Castro MA, Putman CM, Cebral JR (2006) Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images. Acad Radiol 13:811–821. doi: 10.1016/j.acra.2006.03.011 CrossRefGoogle Scholar
  5. 5.
    Cebral JR, Summers RM (2004) Tracheal and central bronchial aerodynamics using virtual bronchoscopy and computational fluid dynamics. IEEE Trans Med Imaging 23:1021–1033. doi: 10.1109/TMI.2004.828680 CrossRefGoogle Scholar
  6. 6.
    Cebral JR, Castro MA, Burgess JE et al (2005) Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol 26:2550–2559Google Scholar
  7. 7.
    Cebral JR, Castro MA, Appanaboyina S et al (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging 24:457–467. doi: 10.1109/TMI.2005.844159 CrossRefGoogle Scholar
  8. 8.
    Cebral JR, Castro MA, Putman CM et al (2008) Flow-area relationship in internal carotid and vertebral arteries. Physiol Meas 29:585–594. doi: 10.1088/0967-3334/29/5/005 CrossRefGoogle Scholar
  9. 9.
    Cheng C, Tempel D, van Haperen R et al (2006) Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113:2744–2753. doi: 10.1161/CIRCULATIONAHA.105.590018 CrossRefGoogle Scholar
  10. 10.
    Jou LD, Quick CM, Young WL et al (2003) Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. AJNR Am J Neuroradiol 24:1804–1810Google Scholar
  11. 11.
    Kaazempur-Mofrad MR, Wada S, Myers JG et al (2005) Mass transport and fluid flow in stenotic arteries: Axisymmetric and asymmetric models. Int J Heat Mass Transfer 48:4510–4517. doi: 10.1016/j.ijheatmasstransfer.2005.05.004 CrossRefGoogle Scholar
  12. 12.
    Murayama Y, Nien YL, Duckwiler G et al (2003) Guglielmi detachable coil embolization of cerebral aneurysms: 11 years’ experience. J Neurosurg 98:959–966Google Scholar
  13. 13.
    Nomura M, Kida S, Uchiyama N et al (2000) Ruptured irregularly shaped aneurysms: pseudoaneurysm formation in a thrombus located at the rupture site. J Neurosurg 93:998–1002Google Scholar
  14. 14.
    Papaioannou TG, Karatzis EN, Vavuranakis M et al (2006) Assessment of vascular wall shear stress and implications for atherosclerotic disease. Int J Cardiol 113:12–18. doi: 10.1016/j.ijcard.2006.03.035 CrossRefGoogle Scholar
  15. 15.
    Raghavan ML, Ma B, Harbaugh RE (2005) Quantified aneurysm shape and rupture risk. J Neurosurg 102:355–362Google Scholar
  16. 16.
    Reneman RS, Arts T, Hoeks AP (2006) Wall shear stress-an important determinant of endothelial cell function and structure-in the arterial system in vivo. Discrepancies with theory. J Vasc Res 43:251–269. doi: 10.1159/000091648 CrossRefGoogle Scholar
  17. 17.
    Shojima M, Oshima M, Takagi K et al (2004) Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35:2500–2505. doi: 10.1161/01.STR.0000144648.89172.0f CrossRefGoogle Scholar
  18. 18.
    Shojima M, Oshima M, Takagi K et al (2005) Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 36:1933–1938. doi: 10.1161/01.STR.0000177877.88925.06 CrossRefGoogle Scholar
  19. 19.
    Soto O, Löhner R, Cebral J et al (2004) A stabilized edge-based implicit incompressible flow formulation. Comput Methods Appl Mech Eng 193:2139–2154. doi: 10.1016/j.cma.2004.01.018 zbMATHCrossRefGoogle Scholar
  20. 20.
    Soustiel JF, Levy E, Bibi R et al (2001) Hemodynamic consequences of cerebral vasospasm on perforating arteries: a phantom model study. Stroke 32:629–635Google Scholar
  21. 21.
    Steinman DA, Milner JS, Norley CJ et al (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am J Neuroradiol 24:559–566Google Scholar
  22. 22.
    Tateshima S, Murayama Y, Villablanca JP et al (2001) Intraaneurysmal flow dynamics study featuring an acrylic aneurysm model manufactured using a computerized tomography angiogram as a mold. J Neurosurg 95:1020–1027CrossRefGoogle Scholar
  23. 23.
    Tateshima S, Murayama Y, Villablanca JP et al (2003) In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs. Stroke 34:187–192. doi: 10.1161/01.STR.0000046456.26587.8B CrossRefGoogle Scholar
  24. 24.
    Tateshima S, Tanishita K, Omura H et al (2007) Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm: in vitro study using longitudinal CT angiogram database. AJNR Am J Neuroradiol 28:622–627Google Scholar
  25. 25.
    Tateshima S, Tanishita K, Omura H et al (2008) Intra-aneurysmal hemodynamics in a large middle cerebral artery aneurysm with wall atherosclerosis. Surg Neurol (in press). doi: 10.1016/j.surneu.2008.03.035
  26. 26.
    The International Study of Unruptured Intracranial (1998) Unruptured intracranial aneurysms–risk of rupture and risks of surgical intervention. International Study of Unruptured Intracranial Aneurysms Investigators. N Engl J Med 339:1725–1733. doi: 10.1056/NEJM199812103392401
  27. 27.
    Tobak M, Peake DJ (1982) Topology of three-dimensional separated flows. Ann Rev Fluid Mech 14:61–85. doi: 10.1146/annurev.fl.14.010182.000425 CrossRefMathSciNetGoogle Scholar
  28. 28.
    Ujiie H, Tachibana H, Hiramatsu O et al (1999) Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 45:119–129. doi: 10.1097/00006123-199907000-00028 discussion 129–130CrossRefGoogle Scholar
  29. 29.
    Ujiie H, Tamano Y, Sasaki K et al (2001) Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery 48:495–502. doi: 10.1097/00006123-200103000-00007 discussion 502–493CrossRefGoogle Scholar
  30. 30.
    Wermer MJ, van der Schaaf IC, Algra A et al (2007) Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: an updated meta-analysis. Stroke 38:1404–1410. doi: 10.1161/ CrossRefGoogle Scholar
  31. 31.
    Wiebers DO, Whisnant JP, Huston J 3rd et al (2003) Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362:103–110. doi: 10.1016/S0140-6736(03)13860-3 CrossRefGoogle Scholar
  32. 32.
    Yim P, Demarco K, Castro MA et al (2005) Characterization of shear stress on the wall of the carotid artery using magnetic resonance imaging and computational fluid dynamics. Stud Health Technol Inform 113:412–442Google Scholar
  33. 33.
    Zhao SZ, Xu XY, Hughes AD et al (2000) Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech 33:975–984. doi: 10.1016/S0021-9290(00)00043-9 CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2008

Authors and Affiliations

  • Aichi Chien
    • 1
  • Satoshi Tateshima
    • 1
  • Marcelo Castro
    • 2
  • James Sayre
    • 3
  • Juan Cebral
    • 2
  • Fernando Viñuela
    • 1
  1. 1.Division of Interventional Neuroradiology, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Computational SciencesGeorge Mason UniversityFairfaxUSA
  3. 3.Department of Biostatistics, School of Public HealthUniversity of CaliforniaLos AngelesUSA

Personalised recommendations