Medical & Biological Engineering & Computing

, Volume 46, Issue 9, pp 889–899 | Cite as

EIT image reconstruction with four dimensional regularization

  • Tao Dai
  • Manuchehr Soleimani
  • Andy AdlerEmail author
Original Article


Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.


Electrical impedance tomography Regularization Spatial and temporal priors Image reconstruction 



This work was supported by a grant from NSERC Canada.


  1. 1.
    Adler A, Guardo R (1996) Electrical impedance tomography: regularised imaging and contrast detection. IEEE Trans Medi Imaging 15:170–179CrossRefGoogle Scholar
  2. 2.
    Adler A, Guardo R, Berthiaume Y (1996) Impedance imaging of lung ventilation: do we need to account for chest expansion?. IEEE Trans Biomed Eng 43(4):414–420CrossRefGoogle Scholar
  3. 3.
    Adler A, Lionheart WRB (2006) Uses and abuses of EIDORS: an extensible software base for EIT. Physiol Meas 27:25–42CrossRefGoogle Scholar
  4. 4.
    Adler A, Dai T, Lionheart WRB (2007) Temporal image reconstruction in electrical impedance tomography. Physiol Meas 28:1–11CrossRefGoogle Scholar
  5. 5.
    Babaeizadeh S, Brooks DH (2006) Effects of electrode location error on boundary element impedance tomography solutions: CR bounds and simulation results. In: 3rd IEEE ISBI: nano to macro, pp. 1080–1083Google Scholar
  6. 6.
    Babaeizadeh S, Brooks DH (2007) Electrical impedance tomography for piecewise constant domains using boundary element shape-based inverse solutions. IEEE Trans on Med Imaging 26(5):637–647CrossRefGoogle Scholar
  7. 7.
    Bacrie CC, Goussard Y, Guardo R (1997) Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint. IEEE Trans Med Imag 16(5):562–571CrossRefGoogle Scholar
  8. 8.
    Bollmann A, Kanuru NK, McTeague KK, Walter PF, DeLurgio DB, Langberg JJ (1998) Frequency analysis of human atrial fibrillation using the surface electrocardiogram and its response to ibutilide. Am J Cardiol 81(12):1439–1445CrossRefGoogle Scholar
  9. 9.
    Boone KG, Holder DS (1996) Effect of skin impedance on image quality and variability in electrical impedance tomography: a model study. Med Biol Eng Comput 34(5):351–354CrossRefGoogle Scholar
  10. 10.
    Cheney M, Isaacson D, Newell JC, Simske S, Goble JC (1990) NOSER: an algorithm for solving the inverse conductivity problem. Int J Imaging Syst Technol 2:66–75CrossRefGoogle Scholar
  11. 11.
    Colton D, Kress R (1992) Inverse acoustic and electromagnetic scattering theory. Springer, Berlin, pp. 121, 289 (new edition: 1998, p. 133, 304)Google Scholar
  12. 12.
    Dai T, Soleimani M, Adler A (2007) Four-dimensional regularization for electrical impedance tomography imaging. In: VIII Conference on electrical impedance tomography, Graz, 29 August–2 September 2007Google Scholar
  13. 13.
    Dehgani H, Soni N, Halter R, Hartov A, Paulsen KD (2005) Excitation patterns in three-dimensional electrical impedance tomography. Physiol Meas 26:185–197CrossRefGoogle Scholar
  14. 14.
    Eyuboglu BM, Brown BH, Barber DC (1989) In vivo imaging of cardiac related impedance changes. IEEE Eng Med Biol Mag 8(1):39–45CrossRefGoogle Scholar
  15. 15.
    Frerichs I (2000) Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas 21:1–21CrossRefGoogle Scholar
  16. 16.
    Van Genderingen HR, van Vught AJ, Jansen JRC (2004) Regional lung volume during high-frequency oscillatory ventilation by electrical impedance tomography. Crit Care Med 32:787–794CrossRefGoogle Scholar
  17. 17.
    Graham B, Adler A (2007) Electrode placement configurations for 3D EIT. Physiol Meas 28:29–44CrossRefGoogle Scholar
  18. 18.
    Hammermeister KE, Brooks RC, Warbasse JR (1974) The rate of change of left ventricular volume in Man: I. Validation and peak systolic ejection rate in health and disease. Circulation 49:729–738Google Scholar
  19. 19.
    Harris ND, Brown BH, Barber DC (1992) Continuous monitoring of lung ventilation with electrical impedance tomography. Med Biol Soc :1754–1755Google Scholar
  20. 20.
    Holder DS (1992) Electrical impedance tomography of brain function. Brain Topogr 5:87–93CrossRefGoogle Scholar
  21. 21.
    Kohler BU, Henning C, Orglmeister R (2002) The principles of software QRS detection. IEEE Eng Med Biol Mag 21:42–57CrossRefGoogle Scholar
  22. 22.
    Lionheart W, Polydorides N, Borsic A (2005) Why is EIT so hard. In: Holder DS (Ed) Electrical impedance tomography: methods, history and applications. IOP, BristolGoogle Scholar
  23. 23.
    Metherall P, Barber DC, Smallwood RH, Brown BH (1996) Three dimensional electrical impedance tomography. Nature 380:509–512CrossRefGoogle Scholar
  24. 24.
    Ormiston JA, Shah PM, Tei C, Wong M (1981) Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation 64: 113–120Google Scholar
  25. 25.
    Schmitt U, Louis AK (2002) Efficient algorithms for the regularization of dynamic inverse problems: I. Theory. Inverse Probl 18(3):645–658zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Schmitt U, Louis AK, Wolters C, Vauhkonen M (2002) Efficient algorithms for the regularization of dynamic inverse problems: II. Applications. Inverse Probl 18(3):659–676zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Seppanen A, Vauhkonen M, Vauhkonen PJ, Somersalo E, Kaipio JP (2001) State estimation with fluid dynamical models in process tomography—an application with impedance tomography. Inverse Probl 17:467–483CrossRefMathSciNetGoogle Scholar
  28. 28.
    Soleimani M, Adler A, Dai T, Peyton AJ (2008) Application of a single step temporal imaging of magnetic induction tomography for metal flow visualization. Insight 50(1):25–29CrossRefGoogle Scholar
  29. 29.
    Tidswell AT, Gibson A, Bayford RH, Holder DS (2001)Electrical impedance tomography of human brain activity with a two-dimensional ring of scalp electrodes. Physiol Meas 22:167–175CrossRefGoogle Scholar
  30. 30.
    Tossavainen OP, Vauhkonen M, Heikkinen LM, Savolainen T (2004) Estimating shapes and freesurfaces with electrical impedance tomography. Meas Sci Technol 15:1402–1411CrossRefGoogle Scholar
  31. 31.
    Vauhkonen PJ, Vauhkonen M, Savolainen T, Kaipio JP (1999) Three-dimensional electrical impedance tomography based on the complete electrode model. IEEE Trans Biomed Eng 46(9):1150–1160CrossRefGoogle Scholar
  32. 32.
    Vauhkonen M, Karjalainen PA, Kaipio JP (1998) A Kalman filter approach to track fast impedance changes in electrical impedance tomography. IEEE Trans Biomed Eng 45:486–493CrossRefGoogle Scholar
  33. 33.
    Vonk-Noordegraaf A, Janse A, Marcus JT, Bronzwaer JG, Postmus PE, Faes TJC, de Vries PM (2000) Determination of stroke volume by means of electrical impedance tomography. Physiol Meas 21:285–293CrossRefGoogle Scholar
  34. 34.
    Wilkinson AJ, Randall EW, Cilliers JJ, Durrett DR, Naidoo T, Long T (2005) A 1000-measurement frames/second ERT data capture system with real-time visualization. IEEE Sens J 5:300–307CrossRefGoogle Scholar
  35. 35.
    Wolf GK, Arnold JH (2005) Noninvasive assessment of lung volume: respiratory inductance plethysmography and electrical impedance tomography. Crit Care Med 33:163–169CrossRefGoogle Scholar
  36. 36.
    Yorkey TJ, Webster JG, Tompkins WJ (1987) Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans Biomed Eng 34:843–852CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2008

Authors and Affiliations

  1. 1.Systems and Computer EngineeringCarleton UniversityOttawaCanada
  2. 2.Electronic and Electrical EngineeringUniversity of BathBathUK

Personalised recommendations