Interventricular coupling coefficients in a thick shell model of passive cardiac chamber deformation

  • N. ToschiEmail author
  • M. Guerrisi
Original Article


Mechanical interplay between the adjacent ventricles is one of the principal modulators of physiopathological heart function, and the underlying mechanisms of interaction are only partially understood, hence hampering clinically useful interpretation of imaging data. In order to characterize the influence of chamber geometry on ventricular coupling, the ventricles and septum are modeled as portions of ellipsoidal shells, and configuration is derived as a function of pressure gradients by combining shell element equilibrium equations through static boundary conditions applied at the sulcus. Diastolic volume (v) surfaces are calculated as a function of pressure (p), contralateral pressure (clp) and intrathoracic pressure (p t ) and match literature data where available. Ventricular interaction is characterized in terms of partial derivatives in v–p–clp–p t space both under physiological and altered (selectively stiffened walls) conditions. The model allows prediction of diastolic ventricular v–p–clp–p t interplay in a variety of physiopathological circumstances.


Ventricular Interaction Cardiovascular Nonlinear Myocardium 


  1. 1.
    Kingma I, Tyberg JV, Smith ER (1983) Effects of diastolic transseptal pressure gradient on ventricular septal position and motion. Circulation 6:1304–1314Google Scholar
  2. 2.
    Beyar R, Dong SJ, Smith ER et al (1993) Ventricular interaction and septal deformation: a model compared with experimental data. Am J Physiol 6(Pt 2):H2044–H2056Google Scholar
  3. 3.
    Brinker JA, Weiss JL, Lappe DL et al (1980) Leftward septal displacement during right ventricular loading in man. Circulation 3:626–633Google Scholar
  4. 4.
    Francone M, Dymarkowski S, Kalantzi M et al (2006) Assessment of ventricular coupling with real-time cine MRI and its value to differentiate constrictive pericarditis from restrictive cardiomyopathy. Eur Radiol 4:944–951CrossRefGoogle Scholar
  5. 5.
    Santamore WP, Burkhoff D (1991) Hemodynamic consequences of ventricular interaction as assessed by model analysis. Am J Physiol 1(Pt 2):H146–H157Google Scholar
  6. 6.
    Slinker BK, Glantz SA (1986) End-systolic and end-diastolic ventricular interaction. Am J Physiol 5(Pt 2):H1062–H1075Google Scholar
  7. 7.
    Little WC, Badke FR, O’Rourke RA (1984) Effect of right ventricular pressure on the end-diastolic left ventricular pressure–volume relationship before and after chronic right ventricular pressure overload in dogs without pericardia. Circ Res 6:719–730Google Scholar
  8. 8.
    Santamore WP, Constantinescu M, Shaffer T (1988) Predictive changes in ventricular interdependence. Ann Biomed Eng 2:215–234CrossRefGoogle Scholar
  9. 9.
    Chung DC, Niranjan SC, Clark JW Jr et al (1997) A dynamic model of ventricular interaction and pericardial influence. Am J Physiol 6(Pt 2):H2942–H2962Google Scholar
  10. 10.
    McDonald IG, Feigenbaum H, Chang S (1972) Analysis of left ventricular wall motion by reflected ultrasound. Application to assessment of myocardial function. Circulation 1:14–25Google Scholar
  11. 11.
    Yamaguchi S, Tsuiki K, Miyawaki H et al (1989) Effect of left ventricular volume on right ventricular end-systolic pressure–volume relation. Resetting of regional preload in right ventricular free wall. Circ Res 3:623–631Google Scholar
  12. 12.
    Li KS, Santamore WP (1993) Contribution of each wall to biventricular function. Cardiovasc Res 5:792–800CrossRefGoogle Scholar
  13. 13.
    Janicki JS, Weber KT (1980) The pericardium and ventricular interaction, distensibility, and function. Am J Physiol 4:H494–H503Google Scholar
  14. 14.
    Duke GJ (1999) Cardiovascular effects of mechanical ventilation. Crit Care Resusc 4:388–399Google Scholar
  15. 15.
    Mitchell JR, Whitelaw WA, Sas R et al (2005) RV filling modulates LV function by direct ventricular interaction during mechanical ventilation. Am J Physiol Heart Circ Physiol 2:H549–H557CrossRefGoogle Scholar
  16. 16.
    Francone M, Dymarkowski S, Kalantzi M et al (2005) Real-time cine MRI of ventricular septal motion: a novel approach to assess ventricular coupling. J Magn Reson Imaging 3:305–309CrossRefGoogle Scholar
  17. 17.
    Farrar DJ, Chow E, Brown CD (1995) Isolated systolic and diastolic ventricular interactions in pacing-induced dilated cardiomyopathy and effects of volume loading and pericardium. Circulation 5:1284–1290Google Scholar
  18. 18.
    Yamaguchi S, Li KS, Harasawa H et al (1993) Acute alterations in systolic ventricular interdependence-mechanical dependence of right ventricle on left ventricle following acute alteration of right ventricular free wall. Basic Res Cardiol 4:350–361Google Scholar
  19. 19.
    Seki S, Itano T, Motohiro K et al (1977) Mechanodynamics at the interventricular sulcus–reciprocal effect of the ventricles on the ventricular function. Jpn Circ J 9:967–974Google Scholar
  20. 20.
    Wong AY, Rautaharju PM (1968) Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell. Am Heart J 5:649–662CrossRefGoogle Scholar
  21. 21.
    Nash MP, Hunter PJ (2000) Computational Mechanics of the Heart. J Elast 61:113–141zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Stevens C, Remme E, Legrice I et al (2003) Ventricular Mechanics in diastole: material parameter sensitivity. J Biomech 36:737–748CrossRefGoogle Scholar
  23. 23.
    Mirsky I (1973) Ventricular and arterial wall stresses based on large deformation analyses. Biophys J 11:1141–1159Google Scholar
  24. 24.
    Janz RF (1982) Estimation of local myocardial stress. Am J Physiol 5:H875–H881Google Scholar
  25. 25.
    Taber LA (1991) On a nonlinear theory for muscle shells: part II—application to the beating left ventricle. J Biomech Eng 1:63–71CrossRefGoogle Scholar
  26. 26.
    Azhari H, Buchalter M, Sideman S et al (1992) A conical model to describe the nonuniformity of the left ventricular twisting motion. Ann Biomed Eng 2:149–165CrossRefGoogle Scholar
  27. 27.
    Santamore WP, Bartlett R, Van Buren SJ et al (1986) Ventricular coupling in constrictive pericarditis. Circulation 3:597–602Google Scholar
  28. 28.
    Woodard JC, Chow E, Farrar DJ (1992) Isolated ventricular systolic interaction during transient reductions in left ventricular pressure. Circ Res 5:944–951Google Scholar
  29. 29.
    Santamore WP, Shaffer T, Hughes D (1986) A theoretical and experimental model of ventricular interdependence. Basic Res Cardiol 5:529–538CrossRefGoogle Scholar
  30. 30.
    Ventsel E, Krauthammer T (2001) Thin plates and shells: theory, analysis, and applications. CRC, New YorkGoogle Scholar
  31. 31.
    Omens JH, May KD, McCulloch AD (1991) Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle. Am J Physiol 3(Pt 2):H918–H928Google Scholar
  32. 32.
    Janicki JS, Weber KT (1980) Factors influencing the diastolic pressure–volume relation of the cardiac ventricles. Fed Proc 2:133–140Google Scholar
  33. 33.
    Weber KT, Janicki JS, Shroff S et al (1981) Contractile mechanics and interaction of the right and left ventricles. Am J Cardiol 3:686–695CrossRefGoogle Scholar
  34. 34.
    McCulloch AD, Omens JH (1991) Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium. J Biomech 7:539–548CrossRefGoogle Scholar
  35. 35.
    McCulloch AD (1995) Cardiac biomechanics. CRC Press, Boca RatonGoogle Scholar
  36. 36.
    Santamore WP, Shaffer T, Papa L (1990) Theoretical model of ventricular interdependence: pericardial effects. Am J Physiol 1(Pt 2):H181–H189Google Scholar
  37. 37.
    Omens JH, MacKenna DA, McCulloch AD (1993) Measurement of strain and analysis of stress in resting rat left ventricular myocardium. J Biomech 6:665–676CrossRefGoogle Scholar
  38. 38.
    Smith BW, Chase JG, Nokes RI et al (2004) Minimal haemodynamic system model including ventricular interaction and valve dynamics. Med Eng Phys 2:131–139CrossRefGoogle Scholar
  39. 39.
    Glantz SA, Misbach GA, Moores WY et al (1978) The pericardium substantially affects the left ventricular diastolic pressure-volume relationship in the dog. Circ Res 3:433–441Google Scholar
  40. 40.
    Taher MF, Santamore WP, Bogen DK (1994) Ventricular interaction is described by three coupling coefficients. Am J Physiol 1(Pt 2):H228–H234Google Scholar
  41. 41.
    Scharf SM, Woods BO, Brown R et al (1987) Effects of the Mueller maneuver on global and regional left ventricular function in angina pectoris with or without previous myocardial infarction. Am J Cardiol 15:1305–1309CrossRefGoogle Scholar
  42. 42.
    Santamore WP, Heckman JL, Bove AA (1983) Cardiovascular changes from expiration to inspiration during IPPV. Am J Physiol 2:H307–H312Google Scholar
  43. 43.
    Feit TS (1979) Diastolic pressure-volume relations and distribution of pressure and fiber extension across the wall of a model left ventricle. Biophys J 1:143–166MathSciNetGoogle Scholar
  44. 44.
    Santamore WP, Dell’Italia LJ (1998) Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis 4:289–308CrossRefGoogle Scholar
  45. 45.
    Maruyama Y, Ashikawa K, Isoyama S et al (1982) Mechanical interactions between four heart chambers with and without the pericardium in canine hearts. Circ Res 1:86–100Google Scholar
  46. 46.
    Kroeker CA, Shrive NG, Belenkie I et al (2003) Pericardium modulates left and right ventricular stroke volumes to compensate for sudden changes in atrial volume. Am J Physiol Heart Circ Physiol 6:H2247–H2254Google Scholar
  47. 47.
    Moulton MJ, Creswell LL, Downing SW et al (1994) Ventricular interaction in the pathologic heart. A model based study. ASAIO J 3:M773–M783CrossRefGoogle Scholar
  48. 48.
    Schmid H, Nash MP, Young AA et al (2006) Myocardial material parameter estimation—a comparative study for simple shear. J Biomech Eng 5:742–750CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2008

Authors and Affiliations

  1. 1.Sezione di Fisica Medica, Dipartimento di Biopatologia e Diagnostica per ImmaginiUniversità Degli Studi di Roma “Tor Vergata”RomeItaly

Personalised recommendations