Medical & Biological Engineering & Computing

, Volume 46, Issue 2, pp 109–120

An informative probability model enhancing real time echobiometry to improve fetal weight estimation accuracy

  • G. Cevenini
  • F. M. Severi
  • C. Bocchi
  • F. Petraglia
  • P. Barbini
Original Article

DOI: 10.1007/s11517-007-0299-2

Cite this article as:
Cevenini, G., Severi, F.M., Bocchi, C. et al. Med Bio Eng Comput (2008) 46: 109. doi:10.1007/s11517-007-0299-2

Abstract

A multinormal probability model is proposed to correct human errors in fetal echobiometry and improve the estimation of fetal weight (EFW). Model parameters were designed to depend on major pregnancy data and were estimated through feed-forward artificial neural networks (ANNs). Data from 4075 women in labour were used for training and testing ANNs. The model was implemented numerically to provide EFW together with probabilities of congruence among measured echobiometric parameters. It enabled ultrasound measurement errors to be real-time checked and corrected interactively. The software was useful for training medical staff and standardizing measurement procedures. It provided multiple statistical data on fetal morphometry and aid for clinical decisions. A clinical protocol for testing the system ability to detect measurement errors was conducted with 61 women in the last week of pregnancy. It led to decisive improvements in EFW accuracy.

Keywords

Probability model Neural networks Ultrasound Echobiometry Fetal weight estimation 

Copyright information

© International Federation for Medical and Biological Engineering 2007

Authors and Affiliations

  • G. Cevenini
    • 1
  • F. M. Severi
    • 2
  • C. Bocchi
    • 2
  • F. Petraglia
    • 2
  • P. Barbini
    • 1
  1. 1.Department of Surgery and BioengineeringUniversity of SienaSienaItaly
  2. 2.Department of Pediatrics, Obstetrics and Reproductive MedicineUniversity of SienaSienaItaly

Personalised recommendations