Medical & Biological Engineering & Computing

, Volume 46, Issue 2, pp 109–120 | Cite as

An informative probability model enhancing real time echobiometry to improve fetal weight estimation accuracy

  • G. Cevenini
  • F. M. Severi
  • C. Bocchi
  • F. Petraglia
  • P. Barbini
Original Article

Abstract

A multinormal probability model is proposed to correct human errors in fetal echobiometry and improve the estimation of fetal weight (EFW). Model parameters were designed to depend on major pregnancy data and were estimated through feed-forward artificial neural networks (ANNs). Data from 4075 women in labour were used for training and testing ANNs. The model was implemented numerically to provide EFW together with probabilities of congruence among measured echobiometric parameters. It enabled ultrasound measurement errors to be real-time checked and corrected interactively. The software was useful for training medical staff and standardizing measurement procedures. It provided multiple statistical data on fetal morphometry and aid for clinical decisions. A clinical protocol for testing the system ability to detect measurement errors was conducted with 61 women in the last week of pregnancy. It led to decisive improvements in EFW accuracy.

Keywords

Probability model Neural networks Ultrasound Echobiometry Fetal weight estimation 

Notes

Acknowledgments

This work was financed by the Italian Ministry of Education, University and Research (MIUR). Special thanks to ESAOTE S.p.A., Genoa, Italy, for its precious and prompt technical support.

References

  1. 1.
    Armitage P, Berry G (1987) Statistical methods in medical research. Blackwell, OxfordGoogle Scholar
  2. 2.
    Ben-Haroush A, Yogev Y, Hod M (2004) Fetal weight estimation in diabetic pregnancies and suspected fetal macrosomia. J Perinat Med 32(2):113–121CrossRefGoogle Scholar
  3. 3.
    Benson CB, Doubilet PM, Saltzman DH (1987) Sonographic determination of fetal weights in diabetic pregnancies. Am J Obstet Gynecol 156(2):441–444Google Scholar
  4. 4.
    Bettelheim D, Deutinger J, Bernaschek (1997) Fetal sonographic biometry: a guide to normal and abnormal measurements. The Parthenon Publishing GroupGoogle Scholar
  5. 5.
    Biagioli B, Scolletta S, Cevenini G, Barbini E, Giomarelli P, Barbini P (2006) A multivariate Bayesian model for assessing morbidity after coronary artery surgery. Crit Care 10(3):R94. doi: 10.1186/cc4951 Google Scholar
  6. 6.
    Bishop HCM (1995) Neural networks for pattern recognition. Clarendon, OxfordGoogle Scholar
  7. 7.
    Chauhan SP, Hendrix NW, Magann EF, Morrison JC, Kenney SP, Devoe LD (1998) Limitations of clinical and sonographic estimates of birth weight: experience with 1034 parturients. Obstet Gynecol 91(1):72–77CrossRefGoogle Scholar
  8. 8.
    Chauhan SP, West DJ, Scardo JA, Boyd JM, Joiner J, Hendrix NW (2000) Antepartum detection of macrosomic fetus: clinical versus sonographic, including soft-tissue measurements. Obstet Gynecol 95(5):639–642CrossRefGoogle Scholar
  9. 9.
    Chauhan SP, Hendrix NW, Magann EF, Morrison JC, Scardo JA, Berghella V (2005) A review of sonographic estimate of fetal weight: vagaries of accuracy. J Matern Fetal Neonatal Med 18(4):211–220CrossRefGoogle Scholar
  10. 10.
    Chauhan SP, Cole J, Sanderson M, Magann EF, Scardo JA (2006) Suspicion of intrauterine growth restriction: use of abdominal circumference alone or estimated fetal weight below 10%. J Matern Fetal Neonatal Med 19(9):557–562CrossRefGoogle Scholar
  11. 11.
    Chuang L, Hwang JY, Chang CH, Yu CH, Chang FM (2002) Ultrasound estimation of fetal weight with the use of computerized artificial neural network model. Ultrasound Med Biol 28(8):991–996CrossRefGoogle Scholar
  12. 12.
    Cohen J, Cohen P, West SG, Aiken LS (2003) Applied multiple regression: correlation analysis for the behavioral sciences. Erlbaum, LondonGoogle Scholar
  13. 13.
    Colman A, Maharaj D, Hutton J, Tuohy J (2006) Reliability of ultrasound estimation of fetal weight in term singleton pregnancies. New Zeal Med J 119(1241):U2146Google Scholar
  14. 14.
    Combs CA, Jaekle RK, Rosenn B, Pope M, Miodovnik M, Siddiqi TA (1993) Sonographic estimation of fetal weight based on a model of fetal volume. Obstet Gynecol 82(3):365–370Google Scholar
  15. 15.
    Coomarasamy A, Connock M, Thornton J, Khan KS (2005) Accuracy of ultrasound biometry in the prediction of macrosomia: a systematic quantitative review. Brit J Obstet Gynaec 112(11):1461–1466Google Scholar
  16. 16.
    Dudley NJ (1995) Selection of appropriate ultrasound methods for the estimation of fetal weight. Brit J Radiol 68:385–388Google Scholar
  17. 17.
    Dudley NJ (2005) A systematic review of the ultrasound estimation of fetal weight. Ultrasound Obstet Gynecol 25(1):80–89CrossRefGoogle Scholar
  18. 18.
    Edwards A, Goff J, Baker L (2001) Accuracy and modifying factors of the sonographic estimation of fetal weight in a high-risk population. Aust NZ J Obstet Gyn 41(2):187–190Google Scholar
  19. 19.
    Etter DM, Kuncicky DC, Moore H (2005) Introduction to MATLAB 7. Prentice Hall, Englewood CliffsGoogle Scholar
  20. 20.
    Farmer RM, Medearis AL, Hirata GI, Platt LD (1992) The use of a neural network for the ultrasonographic estimation of fetal weight in the macrosomic fetus. Am J Obstet Gynecol 166(5):1467–1472Google Scholar
  21. 21.
    Goldberg JD (2004) Routine screening for fetal anomalies: expectations. Obstet Gynecol Clin North Am 31(1):35–50CrossRefGoogle Scholar
  22. 22.
    Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK (1985) Estimation of fetal weight with the use of head, body, and femur measurements - a prospective study. Am J Obstet Gynecol 151:333–7Google Scholar
  23. 23.
    Hadlock FP (1990) Sonographic estimation of fetal age and weight. Fetal Ultrasound 28(1):39–51Google Scholar
  24. 24.
    Haykin S (1994) Neural networks: a comprehensive foundation. Maxwell Macmillian, CanadaMATHGoogle Scholar
  25. 25.
    Hill LM, Breckle R, Gehrking WC, O’Brien PC (1985) Use of femur length in estimation of fetal weight. Am J Obstet Gynecol 152:847–852Google Scholar
  26. 26.
    Jamshidi M (2003) Tools for intelligent control: fuzzy controllers, neural networks and genetic algorithms. Philos Transact A Math Phys Eng Sci 361(1809):1781–1808MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Jordaan HV (1983) Estimation of fetal weight by ultrasound. J Clin Ultrasound 11(2):59–66CrossRefGoogle Scholar
  28. 28.
    Krzanowski WJ (1988) Principles of multivariate analysis: a user’s perspective. Clarendon, OxfordMATHGoogle Scholar
  29. 29.
    Kurmanavicius J, Burkhardt T, Wisser J, Huch R (2004) Ultrasonographic fetal weight estimation: accuracy of formulas and accuracy of examiners by birth weight from 500 to 5000 g. J Perinat Med 32(2):155–161CrossRefGoogle Scholar
  30. 30.
    Lee YB, Kim MJ, Kim MH (2007) Robust border enhancement and detection for measurement of fetal nuchal translucency in ultrasound images. Med Biol Eng Comput (Spec issue). doi: 10.1007/s11517-007-0225-7
  31. 31.
    Lockwood CJ, Weiner S (1986) Assessment of fetal growth. Clin Perinatol 13(1):3–35Google Scholar
  32. 32.
    Mongelli M, Biswas A (2002) Menstrual age-dependent systematic error in sonographic fetal weight estimation: a mathematical model. J Clin Ultrasound 30(3):139–44CrossRefGoogle Scholar
  33. 33.
    Ott WJ, Doyle S, Flamm S, Wittman J (1986) Accurate ultrasonic estimation of fetal weight. Prospective analysis of a new ultrasonic formula. Am J Perinatol 3(4):307–10CrossRefGoogle Scholar
  34. 34.
    Ott WJ (2006) Sonographic diagnosis of fetal growth restriction. Clin Obstet Gynecol 49(2):295–307CrossRefMathSciNetGoogle Scholar
  35. 35.
    Robson SC, Gallivan S, Walkinshaw SA, Vaughan J, Rodeck CH (1993) Ultrasonic estimation of fetal weight: use of targeted formulas in small for gestational age fetuses. Obstet Gynecol 82(3):359–364Google Scholar
  36. 36.
    Rosati P, Exacoustos C, Caruso A, and Mancuso S (1992) Ultrasound diagnosis of fetal macrosomia. Ultrasound Obstet Gynecol 2(1):23–29CrossRefGoogle Scholar
  37. 37.
    Rotmensch S, Celentano C, Liberati M, Malinger G, Sadan O, Bellati U, Glezerman M (1999) Screening efficacy of the subcutaneous tissue width/femur length ratio for fetal macrosomia in the non-diabetic pregnancy. Ultrasound Obstet Gynecol 13(5):340–344CrossRefGoogle Scholar
  38. 38.
    Sabbagha RE, Minogue J, Tamura RK, Hungerford SA (1989) Estimation of birth weight by use of ultrasonographic formulas targeted to LGA, AGA, and SGA fetuses. Am J Obstet Gynecol 160:854–862Google Scholar
  39. 39.
    Sargent DJ (2001) Comparison of artificial neural networks with other statistical approaches: results from medical data sets. Cancer 91(S8):1636–1642CrossRefGoogle Scholar
  40. 40.
    Schild RL, Fimmers R, Hansmann M (2000) Fetal weight estimation by three-dimensional ultrasound. Ultrasound Obstet Gynecol 16(5):445–452CrossRefGoogle Scholar
  41. 41.
    Secher NJ, Djursing H, Hansen PK, Lenstrup C, Sindberg-Eriksen P, Thomsen BL, Keiding N (1987) Estimation of fetal weight in the third trimester by ultrasound. Eur J Obstet Gynecol Reprod Biol 24:1–11CrossRefGoogle Scholar
  42. 42.
    Sladkevicius P, Saltvedt S, Almstrom H, Kublickas M, Grunewald C, Valentin L (2005) Ultrasound dating at 12–14 weeks of gestation. A prospective cross-validation of established dating formulae in in vitro fertilized pregnancies. Ultrasound Obstet Gynecol 26(5):504–511CrossRefGoogle Scholar
  43. 43.
    Thornton JG, Hornbuckle J, Vail A, Spiegelhalter DJ, Levene M, GRIT study group (2004) Infant wellbeing at 2 years of age in the growth restriction intervention trial (GRIT): multicentred randomised controlled trial. Lancet 364(9433):513–520CrossRefGoogle Scholar
  44. 44.
    Woo JS, Wan MC (1986) An evaluation of fetal weight prediction using a simple equation containing the fetal femur length. J Ultrasound Med 5(8):453–457Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2007

Authors and Affiliations

  • G. Cevenini
    • 1
  • F. M. Severi
    • 2
  • C. Bocchi
    • 2
  • F. Petraglia
    • 2
  • P. Barbini
    • 1
  1. 1.Department of Surgery and BioengineeringUniversity of SienaSienaItaly
  2. 2.Department of Pediatrics, Obstetrics and Reproductive MedicineUniversity of SienaSienaItaly

Personalised recommendations