Medical & Biological Engineering & Computing

, Volume 46, Issue 9, pp 923–932 | Cite as

Evaluation of signal space separation via simulation

  • Tao Song
  • Kathleen Gaa
  • Li Cui
  • Lori Feffer
  • Roland R. Lee
  • Mingxiong Huang
Original Article


Signal space separation (SSS) method is an advanced signal-processing approach that can be used to recover bio-magnetic signal and remove external disturbance in empirical magnetoencephalography (MEG) measurements. SSS is based on the solution of the quasi-static approximation of Maxwell equations (i.e., Laplace’s equation) which can be expressed as linear combinations of spherical harmonic functions. In applying SSS, MEG measurements can be split into two parts: brain signals and external interferences. In this paper, after a brief review of the basics of SSS, we evaluate SSS systematically via computer simulation and real MEG data. In the simulations of this paper, two types of interference sources with magnetic and electric current dipoles are used. The interference suppression effects and the quality of the reconstruction of the interested signal are investigated. Also, the degree of spherical harmonic functions and its relationship with signal reconstruction and interference suppression are studied thoroughly. Finally, we provide objective assessments of the advantages and limitations of the SSS approach, and its practical value in MEG measurements.


Signal space separation MEG Spherical harmonic functions Interference reduction Simulation 



The authors would like to thank Samu Taulu of Elekta Neuromag Oy for the helpful suggestions. This work was funded by VA Merit Review Grants awarded to Drs. Huang and Lee.


  1. 1.
    Ahonen AI, Hämäläinen M, Ilmoniemi RJ, Kajola MJ, Knuutila JET, Simola JT, Vilkman VA (1993) Sampling theory for neuromagnetic detector arrays. IEEE Trans Biomed Eng 40(9):859–869CrossRefGoogle Scholar
  2. 2.
    Cheour M, Imada T, Taulu S, Ahonen A, Salonen J, Kuhl P (2004) Magnetoencephalography is feasible for infant assessment of auditory discrimination. Exp Neurol 190 (Suppl 1):s44–51CrossRefGoogle Scholar
  3. 3.
    Cohen D, Schläpfer U, Ahlfors S, Hämäläinen M, Halgren E (2002) New six-layer magnetically-shielded room for MEG. In: Proceedings of the 13th international conference on biomagnetism, pp 919–921Google Scholar
  4. 4.
    Gauss CF (1838, 1839) Allgemeine Theorie des Erdmagnetismus, Resultate aus den Beobachtungen des magnetischen Verein im Jahre. Translated into English by Mrs. Sabine, revised by Sir John Herschel in Scientific Memoirs Selected. Trans Foreign Acad Learn Soc Foreign J 2:184–251Google Scholar
  5. 5.
    Golub G, van Loan C (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press, London, pp 602–606zbMATHGoogle Scholar
  6. 6.
    Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J and Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497CrossRefGoogle Scholar
  7. 7.
    Harrison CGA (2006) Variation of spherical harmonic power as a function of harmonic order for Earth’s core and crustal magnetic field and for Mars’ crustal field. Geochem Geophys Geosyst 7(10). doi: 10.1029/2006GC001334
  8. 8.
    Hill EH (1954) The theory of vector spherical harmonics. Am J Phys 22:211–214zbMATHCrossRefGoogle Scholar
  9. 9.
    Huang MX, Song T, Lee RR, Dale A, Halgren E, Schlapfer E, Parkonen L, Kajola M, Ahonen A, Cohen D (2006) New State of The Art MEG system at The University of California at San Diego. In: 15th international conference on biomagnetism, BIOMAG 2006, Vancouver, Canada, P309Google Scholar
  10. 10.
    Huotilainen M, Kujala A, Hotakainen M, Parkkonen L, Taulu S, Simola J, Nenonen J, Karjalainen M, Näätänen R (2005) Short-term memory functions of the human fetus recorded with magnetoencephalography. Neuroreport, 16:81–84CrossRefGoogle Scholar
  11. 11.
    Imada T, Zhang Y, Cheour M, Taulu S, Ahonen A, Kuhl PK (2006) Infant speech perception activates Broca’s area: a developmental magnetoencephalography study. Neuroreport 17(10):957–962CrossRefGoogle Scholar
  12. 12.
    Jackson JD (1999) Classical electrodynamics. Wiley, New YorkzbMATHGoogle Scholar
  13. 13.
    Makela JP, Forss N, Jaaskelainen J, Kirveskari E, Korvenoja A, Paetau R (2006) Magnetoencephalography in neurosurgery. Neurosurgery 59(3):493–511CrossRefGoogle Scholar
  14. 14.
    Makeig S, Jung T, Bell AJ, and Sejnowski TJ (1997) Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci 94:10979–10984CrossRefGoogle Scholar
  15. 15.
    Makeig S, Westfield W, Enghoff S, Jung TP, Townsend J, Courchesne E, and Sejnowski O (2002) Dynamic brain sources of visual evoked responses. Science 295(5555):690–694CrossRefGoogle Scholar
  16. 16.
    Nurminen J, Taulu S, Okada Y (2006) Hardware requirements of the signal space separation method. Mind and Brain V: Physics and the Brain.
  17. 17.
    Pihko E, Lauronen L, Wikström H, Taulu S, Nurminen J, Kivitie-Kallio S, Okada Y (2004) Somatosensory evoked potentials and magnetic fields elicited by tactile stimulation of the hand during active and quiet sleep in newborns. Clin Neurophysiol 115(2):448–455CrossRefGoogle Scholar
  18. 18.
    Rush A (2000) Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiatry 47(4):276–286CrossRefMathSciNetGoogle Scholar
  19. 19.
    Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32(1):11–22CrossRefGoogle Scholar
  20. 20.
    Taulu S, Kajola M, Simola J (2004) Suppression of interference and artifacts by the Signal Space Separation Method. Brain Topogr 16(4):269–275CrossRefGoogle Scholar
  21. 21.
    Taulu S, Kajola M (2005) Presentation of electromagnetic multichannel data: The signal space separation method. J Appl Phys 97(12):124905–124905–10Google Scholar
  22. 22.
    Taulu S, Simola J (2006) Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol 51(7):1759–1769CrossRefGoogle Scholar
  23. 23.
    Taulu S, Simola J, Kajola M (2005b) Applications of the signal space separation method. IEEE Trans Signal Process 53(9):3359–3372CrossRefMathSciNetGoogle Scholar
  24. 24.
    Tesche CD, Uusitalo M, Ilmoniemi RJ, Huotilainen M, Kajola M, Salonen O (1995) Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroenceph Clin Neurophysiol 95:189–200CrossRefGoogle Scholar
  25. 25.
    Uusitalo MA, IImoniemi R (1997) The signal-space projection (SSP) method for seperating MEG or EEG into components. Med Biol Eng Comput 35:135–140CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2007

Authors and Affiliations

  • Tao Song
    • 1
  • Kathleen Gaa
    • 1
  • Li Cui
    • 1
  • Lori Feffer
    • 2
  • Roland R. Lee
    • 1
    • 2
  • Mingxiong Huang
    • 1
    • 2
    • 3
  1. 1.Radiology DepartmentUniversity of CaliforniaSan DiegoUSA
  2. 2.Radiology ServiceSan Diego VA Healthcare SystemSan DiegoUSA
  3. 3.Radiology Imaging LabUCSDSan DiegoUSA

Personalised recommendations