Medical & Biological Engineering & Computing

, Volume 45, Issue 12, pp 1163–1174 | Cite as

Wireless and inductively powered implant for measuring electrocardiogram

  • Jarno Riistama
  • Juho Väisänen
  • Sami Heinisuo
  • Hanna Harjunpää
  • Satu Arra
  • Kati Kokko
  • Maunu Mäntylä
  • Jutta Kaihilahti
  • Pekka Heino
  • Minna Kellomäki
  • Outi Vainio
  • Jukka Vanhala
  • Jukka Lekkala
  • Jari Hyttinen
Review Article

Abstract

The development of an active implantable device for measuring electrocardiogram (ECG) is presented. The study is a part of a project which aims at developing implantable ECG instrumentation with wireless data and power transfer (http://www.ele.tut.fi/tule). The developed implant presented here has all the measurement electronics as well as power and data communication instrumentation included. The implant itself contains no battery, while power for the implant is transferred electromagnetically from an external reader device. The results of testing the implant attached on the body surface and in vitro in a water container are also presented. The developed system was also successfully tested in in vivo measurements, which were conducted on four cows with an implantation time of 24 h. The in vivo testing of implant in cows was conducted by a veterinarian in supervised conditions under approved animal experiment licence.

Keywords

ECG Implant Wireless In vivo In vitro 

References

  1. 1.
    Atmel Corporation (2003) U2270B Read/Write Base Station. DatasheetGoogle Scholar
  2. 2.
    Atmel Corporation (2003) U2270B application note—electronic immobilizers for the automotive industryGoogle Scholar
  3. 3.
    Atmel Corporation (2003) U3280M transponder interface for microcontroller. DatasheetGoogle Scholar
  4. 4.
    Alonso M, Finn EJ (1983) Fundamental university physics, vol II, 2nd edn. Addison-Wesley, ReadingGoogle Scholar
  5. 5.
    Boersma L, Mont L, Sionis A, Garcia E, Brugada J (2004) Value of the implantable loop recorder for the management of patients with unexplained syncope. Europace 6:70–76CrossRefGoogle Scholar
  6. 6.
    Campell PK, Jones KE (1992) Materials for implantable electrodes and electronic devices materials science and technology. In: Cahn RW, Hansen P, Kramer EJ (eds) A comprehensive treatment. VCH, Weinheim, pp 345–372Google Scholar
  7. 7.
    Chrysostomakis SI, Klapsinos NC, Simantirakis EN, Marketou ME, Kambouraki DC, Vardas PE (2003) Sensing issues related to the clinical use of implantable loop recorders. Europace 5:143–148CrossRefGoogle Scholar
  8. 8.
    Claes W, Puers R, Sansen W, De Cooman M, Duyck J, Naert I (2002) A low power miniaturized autonomous data logger for dental implants. Sens Actuators A Phys 97-8:548–556CrossRefGoogle Scholar
  9. 9.
    Farwell DJ, Freemantle N, Sulke AN (2004) Use of implantable loop recorders in the diagnosis and management of syncope. Eur Heart J 25:1257–1263CrossRefGoogle Scholar
  10. 10.
    Finkenzeller K (2003) RFID handbook—fundamentals and applications in contactless smart cards and identification. Wiley, New YorkGoogle Scholar
  11. 11.
    Heinisuo S, Vanhala J (2006) Wireless platform for multi-channel analog measurements. In: Proceedings of 28th annual international conference, IEEE Engineering in Medicine and Biology Society, New York, pp 5908–5911Google Scholar
  12. 12.
    Johnson CR (1997) Computational and numerical methods for bioelectric field problems. Crit Rev Biomed Eng 25:1–81Google Scholar
  13. 13.
    Jutley RS, Shepherd DE, Hukins DW, Jeffrey RR (2003) Preliminary evaluation of the sternum screw: a novel method for improved sternal closure to prevent dehiscence. Cardiovasc Surg 11:85–89CrossRefGoogle Scholar
  14. 14.
    Malmivuo J, Plonsey R (1995) Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New YorkGoogle Scholar
  15. 15.
    microIDTM (1998) 125 kHz RFID system design guide. Microchip Technology IncGoogle Scholar
  16. 16.
    Mokwa W, Schnakenberg U (2001) Micro-transponder systems for medical applications Instrumentation and Measurement. IEEE Trans 50:1551–1555Google Scholar
  17. 17.
    Riistama J, Väisänen J, Heinisuo S, Lekkala J, Hyttinen J (2005) Introducing a wireless, passive and implantable device to measure ECG. In: IFMBE proceedings of the 3rd European medical and biological engineering conference, IFMBE, PragueGoogle Scholar
  18. 18.
    Riistama J, Lekkala J (2006) Electrode–electrolyte interface properties in implantation conditions proc. Engineering in Medicine and Biology Society, 2006. In: 28th annual international conference of the IEEE, pp 6021–6024Google Scholar
  19. 19.
    Riistama J, Lekkala J (2006) Electrical properties of electrodes in implantation conditions (unpublished)Google Scholar
  20. 20.
    Song Z, Jenkins J, Burke M, Arzbaecher R (2004) The feasibility of ST-segment monitoring with a subcutaneous device. J Electrocardiol 37(Suppl):174–179CrossRefGoogle Scholar
  21. 21.
    Sörnmo L, Laguna P (2005) Bioelecrical signal processing in cardiac and neurological applications. Elsevier Inc., London, p 668Google Scholar
  22. 22.
    Takahata K, DeHennis A, Wise KD, Gianchandani YB (2003) Stentenna: a micromachined antenna stent for wireless monitoring of implantable microsensors proc. Engineering in Medicine and Biology Society. In: Proceedings of the 25th annual international conference of the IEEE, pp 3360–3363Google Scholar
  23. 23.
    Vehkaoja A, Lekkala J (2004) Wearable wireless biopotential measurement device. In: Proceedings of 26th annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 2177–2179Google Scholar
  24. 24.
    Vehkaoja A and Lekkala J (2006) Wireless measurement band for EEG mismatch negativity registration in mobile activities. In: Proceedings of XVIII IMEKO world congress: metrology for a sustainable development, Rio de Janeiro, BrazilGoogle Scholar
  25. 25.
    Väisänen J, Hyttinen J, Puurtinen M, Kauppinen P, Malmivuo J (2004) Prediction of implantable ECG lead systems by using thorax models. In: Proceedings of Engineering in Medicine and Biology Society. Proceedings of the 26th annual international conference of the IEEE, pp 809–812Google Scholar
  26. 26.
    Väisänen J, Hyttinen J, Malmivuo J (2006) Finite difference and lead field methods in designing of implantable. ECG Monit 44:857–864Google Scholar
  27. 27.
    Zhang F, Zheng Z, Chen Y, Liu X, Chen A, Jiang Z (1998) In vivo investigation of blood compatibility of titanium oxide films. J Biomed Mater Res 42:128–33CrossRefGoogle Scholar
  28. 28.
    Yamagishi FG (1991) Investigation of plasma-polymerized films as primers for parylene-c coatings on neural prosthesis. Materials Thin Solid Films 202:39–50CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2007

Authors and Affiliations

  • Jarno Riistama
    • 1
  • Juho Väisänen
    • 2
  • Sami Heinisuo
    • 3
  • Hanna Harjunpää
    • 4
  • Satu Arra
    • 3
  • Kati Kokko
    • 3
  • Maunu Mäntylä
    • 3
  • Jutta Kaihilahti
    • 5
    • 6
  • Pekka Heino
    • 3
  • Minna Kellomäki
    • 4
  • Outi Vainio
    • 5
  • Jukka Vanhala
    • 3
  • Jukka Lekkala
    • 1
  • Jari Hyttinen
    • 2
  1. 1.Institute of Measurement and Information TechnologyTampere University of TechnologyTampereFinland
  2. 2.Ragnar Granit InstituteTampere University of TechnologyTampereFinland
  3. 3.Institute of ElectronicsTampere University of TechnologyTampereFinland
  4. 4.Institute of BiomaterialTampere University of TechnologyTampereFinland
  5. 5.MTT Agrifood Research Finland, Animal Production ResearchJokioinenFinland
  6. 6.Faculty of Veterinary Medicine, Department of Clinical Veterinary SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations