Advertisement

Medical & Biological Engineering & Computing

, Volume 45, Issue 10, pp 957–967 | Cite as

An augmented reality simulator for ultrasound guided needle placement training

  • D. Magee
  • Y. Zhu
  • R. Ratnalingam
  • P. Gardner
  • D. Kessel
Original Article

Abstract

Details are presented of a low cost augmented-reality system for the simulation of ultrasound guided needle insertion procedures (tissue biopsy, abscess drainage, nephrostomy etc.) for interventional radiology education and training. The system comprises physical elements; a mannequin, a mock ultrasound probe and a needle, and software elements; generating virtual ultrasound anatomy and allowing data collection. These two elements are linked by a pair of magnetic 3D position sensors. Virtual anatomic images are generated based on anatomic data derived from full body CT scans of live humans. Details of the novel aspects of this system are presented including; image generation, registration and calibration.

Keywords

Ultrasound Simulation Needle-placement Augmented-reality 

References

  1. 1.
    Alterovitz R, Pouliot J, Taschereau R, Hsu I, Goldberg K (2003) Simulating needle insertion and radioactive seed implantation for prostate brachytherapy. Proc Med Meets Virtual Reality 12:19–25Google Scholar
  2. 2.
    Besl P, McKay N (1992) A method for registration of 3D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256CrossRefGoogle Scholar
  3. 3.
    Dawson S (2006) Procedural simulation: a primer. J Vasc Interv Radiol 17:205–213CrossRefGoogle Scholar
  4. 4.
    DeBonet J (1997) Multiresolution sampling procedure for analysis and synthesis of texture images. In: Proceedings of international conference on computer graphics and interactive techniques (SIGGRAPH), pp 361–368Google Scholar
  5. 5.
    Efros A, Freeman W (2001) Image quilting for texture synthesis and transfer. In: Proceedings of international conference on computer graphics and interactive techniques (SIGGRAPH), pp 341–346Google Scholar
  6. 6.
    Fischler M, Bolles R (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Graph Image Process 24(6):381–395MathSciNetGoogle Scholar
  7. 7.
    Gould D, Reekers J, Kessel D, Chalmers N, Sapoval M, Patel A, Becker G, Lee M, Stockx L (2006a) Simulation devices in interventional radiology: caveat emptor. Cardiovascular Intervent Radiol 29:4–6CrossRefGoogle Scholar
  8. 8.
    Gould D, Kessel D, Healey A, Johnson S, Lewandowski W (2006b) Simulators in catheter-based interventional radiology: training or computer games. Clin Radiol 61:556–561CrossRefGoogle Scholar
  9. 9.
    Heeger D, Bergen J (1995) Pyramid-based texture analysis/synthesis. In: Proceedings of international conference on computer graphics and interactive techniques (SIGGRAPH), pp 229–238Google Scholar
  10. 10.
    Magee D, Bulpitt A, Berry E (2001) Combining 3D deformable models and level set methods for the segmentation of abdominal aortic aneurisms. Proc Br Mach Vis Conf 1:333–341Google Scholar
  11. 11.
    Magee D, Kessel D (2005) A computer based simulator for ultrasound guided needle insertion procedures. IEE Conf Vis Inf Eng 1:301–308CrossRefGoogle Scholar
  12. 12.
    Peachey D (1985) Solid texturing of complex objects. In: Proceedings of international conference on computer graphics and interactive techniques (SIGGRAPH), pp 279–286Google Scholar
  13. 13.
    Perlin K (1985) An image synthesizer. In: Proceedings of international conference on computer graphics and interactive techniques (SIGGRAPH), pp 287–296Google Scholar
  14. 14.
    Pieper S, Weidenbach M, Berlage T (1997) Registration of 3D ultrasound images to surface models of the heart. In: Proceedings of the interface to real & virtual worlds, pp 211–213Google Scholar
  15. 15.
    Reznek M, Harter P, Krummel T (2002) Virtual reality and simulation: training the future emergency physician. Acad Emerg Med 9:78–87CrossRefGoogle Scholar
  16. 16.
    Schijven M, Jakimowicz J (2002) Face-, expert and referent validity of the Xitact LS500 Laparoscopy simulator. Surg Endosc 16:1764–1770CrossRefGoogle Scholar
  17. 17.
    Schijven M, Jakimowicz J (2003) Construct validity: experts and novices performing on the Xitact LS500 Laparoscopy simulator. Surg Endosc 17:803–810CrossRefGoogle Scholar
  18. 18.
    Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, CambridgezbMATHGoogle Scholar
  19. 19.
    Seymour N, Gallagher A, Roman S et al (2002) Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg 236:458–464CrossRefGoogle Scholar
  20. 20.
    Tafra L (2001) The learning curve and sentinel node biopsy. Am J Surg 182:347–350CrossRefGoogle Scholar
  21. 21.
    Wang Y, Chui C, Lim H, Cai Y, Mak K (1998) Real-time interactive simulator for percutaneous coronary revascularization procedures. Comput Aided Surg 3:211–227CrossRefGoogle Scholar
  22. 22.
    Weidenbach M, Wild F, Scheer K, Muth G, Kreutter S, Grunst G, Berlage T, Schneider P (2005) Computer-based training in two-dimensional echocardiography using an echocardiography simulator. J Am Soc Echocardiogr 18:362–366CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2007

Authors and Affiliations

  • D. Magee
    • 1
  • Y. Zhu
    • 1
  • R. Ratnalingam
    • 2
  • P. Gardner
    • 3
  • D. Kessel
    • 2
  1. 1.School of ComputingUniversity of LeedsLeedsUK
  2. 2.Leeds Teaching Hospitals NHS TrustLeedsUK
  3. 3.Institute of Psychological Sciences University of LeedsLeedsUK

Personalised recommendations