Medical & Biological Engineering & Computing

, Volume 45, Issue 9, pp 887–900 | Cite as

ARMin: a robot for patient-cooperative arm therapy

Original Article


Task-oriented, repetitive and intensive arm training can enhance arm rehabilitation in patients with paralyzed upper extremities due to lesions of the central nervous system. There is evidence that the training duration is a key factor for the therapy progress. Robot-supported therapy can improve the rehabilitation allowing more intensive training. This paper presents the kinematics, the control and the therapy modes of the arm therapy robot ARMin. It is a haptic display with semi-exoskeleton kinematics with four active and two passive degrees of freedom. Equipped with position, force and torque sensors the device can deliver patient-cooperative arm therapy taking into account the activity of the patient and supporting him/her only as much as needed. The haptic display is combined with an audiovisual display that is used to present the movement and the movement task to the patient. It is assumed that the patient-cooperative therapy approach combined with a multimodal display can increase the patient’s motivation and activity and, therefore, the therapeutic progress.


Robotics Haptic device Exoskeleton Rehabilitation Arm therapy 


  1. 1.
    Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT (1997) The effect of robot-assisted therapy and rehabilitive training on motor recovery following stroke. Arch Neurol 54:443–446Google Scholar
  2. 2.
    Bayona NA, Bitensky J, Salter K, Teasell R (2005) The role of task-specific training in rehabilitation therapies. Top Stroke Rehabil 12:58–65Google Scholar
  3. 3.
    Ellis RE, Ismaeil OM, Lipsett M (1996) Design and evaluation of a high-performance haptic interface. Robotica 14:321–327Google Scholar
  4. 4.
    Emken JL, Bobrow JE, Reinjkensmeyer DJ (2005) Robotic movement training as an optimization problem: designing a controller that can assist only as needed. In: Proceedings of ICORR 2005, 9th international conference rehabilitation robotics, pp 307–312Google Scholar
  5. 5.
    Finley MA, Fasoli SE, Dipietro L, Ohlhoff J, Macclellan L, Meister C et al (2005) Short-duration robotic therapy in stroke patients with severe upper-limb motor impairment. J Rehab Res Dev 42(5):683–691CrossRefGoogle Scholar
  6. 6.
    Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703Google Scholar
  7. 7.
    Harwin W, Loureiro R, Amirabdollahian F, Taylor M, Johnson G, Stokes E, Coote S, Topping M, Collin C et al (2001) In: Marincek C et al (eds) The Gentle/s project: a new method for delivering neuro-rehabilitation, asistive technology-added value to the quality of life AAATE’01.ISO Press, Amsterdam, pp 36–41Google Scholar
  8. 8.
    Herzog W, Nigg BM (1994) Biomechanics of the Muskulo-skeletal system. Wiley, ChichesterGoogle Scholar
  9. 9.
    Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML (2005) Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 36(9):1960–1966CrossRefGoogle Scholar
  10. 10.
    Hogan N (1985a) Impedance control: an approach to manipulation: Part I—theory. ASME J Dyn Syst Meas Control 107(11):1–7MATHGoogle Scholar
  11. 11.
    Hogan N (1985b) Impedance control: an approach to manipulation: Part II—implementation. ASME J Dyn Syst Meas Control 107(11):8–16MATHGoogle Scholar
  12. 12.
    Hogan N (1985c) Impedance control: an approach to manipulation: Part III—applications. ASME J Dyn Syst Meas Control 107(11):17–24MATHCrossRefGoogle Scholar
  13. 13.
    Hogan N, Krebs HI, Rohrer B, Palazzolo JJ, Dipietro L, Fasoli SE, Stein J, Hughes R, Frontera WR, Lynch D, Volpe BT (2006) Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. J Rehab Res Dev 43(5):605–618CrossRefGoogle Scholar
  14. 14.
    Jack D, Boian R, Merians AS, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H (2001) Virtual reality-enhanced stroke rehabilitation. IEEE Trans Neural Syst Rehab Eng 9(3):308–318CrossRefGoogle Scholar
  15. 15.
    Jung-Hoon H, Ronald CA, Dong-Soo K (2003) Mobile robots at your fingertip: Bezier curve on-line trajectory generation for supervisory control. IEEE International conference of intelligent robots and systemsGoogle Scholar
  16. 16.
    Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-Aided Neurorehabilitation. IEEE Trans Rehab Eng 6:75–87CrossRefGoogle Scholar
  17. 17.
    Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC (1997) Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke 28:1550–1556Google Scholar
  18. 18.
    Kwakkel G, Wagenaar RC, Twisk JWE, Langkhorst GJ, Koetsier JC (1999) Intersity of leg and arm training after primary middle-celebral artery stroke: a randomised trial. Lancet 35:191–196CrossRefGoogle Scholar
  19. 19.
    Kwakkel G, Kollen BJ, Wagenaar RC (2002) Long therm effects of upper and lower limb training after stroke: a randomised trial. J Neurol Neurosurg Psychiat 72:473–479Google Scholar
  20. 20.
    Luft AR, McCombe-Waller S, Whitall J, Forrester LW, Macko R, Sorkin JD, Schulz JB, Goldberg AP, Hanley DF (2004) Repetitive bilateral arm training and motor cortex activation in chronic stroke—a randomized controlled trial. JAMA 292:1853–1861CrossRefGoogle Scholar
  21. 21.
    Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehab 83(7):952–959CrossRefGoogle Scholar
  22. 22.
    Langhammer B, Stanghelle JK (2000) Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomised controlled study. Clin Rehabil 14:361–369CrossRefGoogle Scholar
  23. 23.
    Mihelj M, Nef T, Riener R (2007) A novel paradigm for patient cooperative control of upper limb rehabilitation robots. Adv Robot 21(8):843–867CrossRefGoogle Scholar
  24. 24.
    Nef T, Colombo G, Riener R (2005) ARMin—robot for movement therapy of the upper extremities. Automatisierungstechnik 53(12):597–606CrossRefGoogle Scholar
  25. 25.
    Platz T (2003) Evidenzbasierte Armrehabilitation: Eine systematische Literaturübersicht. Nervenarzt 74:841–849CrossRefGoogle Scholar
  26. 26.
    Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, IJzerman MJ (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43(2):171–184CrossRefGoogle Scholar
  27. 27.
    Riener R, Nef T, Colombo G (2005) Robot-aided neurorehabilitation for the upper extremities. Med Biol Eng Comput 43:2–10CrossRefGoogle Scholar
  28. 28.
    Riener R, Lünenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V (2005) Cooperative subject-centered strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehab Eng 13:380–393CrossRefGoogle Scholar
  29. 29.
    Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, Cramer SC, Bobrow JE, Reinkensmeyer DJ (2006) Automating arm movement training following severe stroke: functinal exercise with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng 14(3):378–389CrossRefGoogle Scholar
  30. 30.
    Schouten AC, de Vlugt E, van der Helm FCT, Brouwn GG (2004) Optimal posture control of a musculo-skeletal arm model. Biol Cybern 84(2):143–152CrossRefGoogle Scholar
  31. 31.
    Siciliano B, Villani L (1999) Robot force control. Kluwer, BostonMATHGoogle Scholar
  32. 32.
    Stein J, Krebs HI, Frontera WR, Fasoli SE, Hughes R, Hogan N (2004) Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil 83(9):720–728CrossRefGoogle Scholar
  33. 33.
    Sunderland A, Tinson DJ, Bradley EL, Fletcher D, Langton HR, Wade DT (1992) Enhanced physical therapy improves recovery of arm function after stroke. A randomised clinical trial. J Neurol Neursurg Psychiatry 55:530–535CrossRefGoogle Scholar
  34. 34.
    Winstein CJ, Rose DK, Tan SM, Lewthwaite R, Chui HC, Azen SP (2004) A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: a pilot study of immediate and long-term outcomes. Arch Phys Med Rehab 85(4):620–628CrossRefGoogle Scholar
  35. 35.
    Winter D (1989) Biomechanics and motor control of human movement, 2 edn. Wiley, New YorkGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2007

Authors and Affiliations

  1. 1.Sensory-Motor Systems (SMS) LaboratoryETH ZürichZurichSwitzerland
  2. 2.Spinal Cord Injury CenterUniversity Hospital Balgrist, University ZurichZurichSwitzerland

Personalised recommendations