Advertisement

Medical & Biological Engineering & Computing

, Volume 45, Issue 8, pp 719–735 | Cite as

Assessment of cerebrospinal fluid outflow resistance

  • Anders EklundEmail author
  • Peter Smielewski
  • Iain Chambers
  • Noam Alperin
  • Jan Malm
  • Marek Czosnyka
  • Anthony Marmarou
Review Article

Abstract

The brain and the spinal cord are contained in a cavity and are surrounded by cerebrospinal fluid (CSF), which provides physical support for the brain and a cushion against external pressure. Hydrocephalus is a disease, associated with disturbances in the CSF dynamics, which can be surgically treated by inserting a shunt or third ventriculostomy. This review describes the physiological background, modeling and mathematics, and the investigational methods for determining the CSF dynamic properties, with specific focus on the CSF outflow resistance, R out. A model of the cerebrospinal fluid dynamic system, with a pressure-independent R out, a pressure-dependent compliance and a constant formation rate of CSF is widely accepted. Using mathematical expressions calculated from the model, along with active infusion of artificial CSF and observation of corresponding change in ICP allows measurements of CSF dynamics. Distinction between normal pressure hydrocephalus and differential diagnoses, prediction of clinical response to shunting and the possibility of assessment of shunt function in vivo are the three most important applications of infusion studies in clinical practice.

Keywords

Constant Infusion Infusion Test Normal Pressure Hydrocephalus Normal Pressure Hydrocephalus Outflow Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Nina Andersson for assisting with the mathematical derivations. Dr. Czosnyka is on unpaid leave from Warsaw University of Technology, Warsaw, Poland. Dr. Eklund was supported by grant 621-2005-3047 from Swedish Research Council.

References

  1. 1.
    Agren_Wilsson A, Roslin M, Eklund A, Koskinen LO, Bergenheim AT, Malm J (2003) Intracerebral microdialysis and CSF hydrodynamics in idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 74:217–21CrossRefGoogle Scholar
  2. 2.
    Agren-Wilsson A, Eklund A, Koskinen LO, Bergenheim AT, Malm J (2005) Brain energy metabolism and intracranial pressure in idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 76:1088–93CrossRefGoogle Scholar
  3. 3.
    Albeck MJ, Borgesen SE, Gjerris F, Schmidt JF, Sorensen PS (1991) Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects. J Neurosurg 74:597–600Google Scholar
  4. 4.
    Alperin N, Mazda M, Lichtor T, Lee SH (2006) From cerebrospinal fluid pulsation to noninvasive intracranial compliance and pressure measured by MRI flow studies. Curr Med Imaging Rev 2:117–129CrossRefGoogle Scholar
  5. 5.
    Alperin NJ, Lee SH, Loth F, Raksin PB, Lichtor T (2000) MR-intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology 217:877–885Google Scholar
  6. 6.
    Andersson N, Malm J, Backlund T, Eklund A (2005) Assessment of cerebrospinal fluid outflow conductance using constant-pressure infusion-a method with real time estimation of reliability. Physiol Meas 26:1137–1148CrossRefGoogle Scholar
  7. 7.
    Avezaat CJ, Eijndhoven JHM (1984) Cerebrospinal fluid pulse pressure and craniospinal dynamics. Doctoral thesis, Academic Hospital of Rotterdam and Erasmus UniversityGoogle Scholar
  8. 8.
    Bech RA, Waldemar G, Gjerris F, Klinken L, Juhler M (1999) Shunting effects in patients with idiopathic normal pressure hydrocephalus; correlation with cerebral and leptomeningeal biopsy findings. Acta Neurochir (Wien) 141:633–639CrossRefGoogle Scholar
  9. 9.
    Bech-Azeddine R, Gjerris F, Waldemar G, Czosnyka M, Juhler M (2005) Intraventricular or lumbar infusion test in adult communicating hydrocephalus? Practical consequences and clinical outcome of shunt operation. Acta Neurochir (Wien) 147:1027–1036CrossRefGoogle Scholar
  10. 10.
    Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HA, Avezaat CJ, De_Jong DA, Gooskens RH, Hermans J (1997) Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J Neurosurg 87:687–693Google Scholar
  11. 11.
    Borgesen SE, Albeck MJ, Gjerris F, Czosnyka M, Laniewski P (1992) Computerized infusion test compared to steady pressure constant infusion test in measurement of resistance to CSF outflow. Acta Neurochir (Wien) 119:12–16CrossRefGoogle Scholar
  12. 12.
    Borgesen SE, Gjerris F (1982) The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain 105:65–86CrossRefGoogle Scholar
  13. 13.
    Borgesen SE, Gjerris F, Srensen SC (1978) The resistance to cerebrospinal fluid absorption in humans. A method of evaluation by lumbo-ventricular perfusion, with particular reference to normal pressure hydrocephalus. Acta Neurol Scand 57:88–96Google Scholar
  14. 14.
    Chapman PH, Cosman ER, Arnold MA (1990) The relationship between ventricular fluid pressure and body position in normal subjects and subjects with shunts: a telemetric study. Neurosurgery 26:181–189CrossRefGoogle Scholar
  15. 15.
    Cobb WS, Burns JM, Kercher KW, Matthews BD, James Norton H, Todd Heniford B (2005) Normal intraabdominal pressure in healthy adults. J Surg Res 129:231–235CrossRefGoogle Scholar
  16. 16.
    Czosnyka M, Batorski L, Laniewski P, Maksymowicz W, Koszewski W, Zaworski W (1990) A computer system for the identification of the cerebrospinal compensatory model. Acta Neurochir 105:112–116CrossRefGoogle Scholar
  17. 17.
    Czosnyka M, Batorski L, Roszkowski M, Tomaszewski J, Wocjan J, Walencik A, Zabolotny W (1993) Cerebrospinal compensation in hydrocephalic children. Childs Nerv Syst 9:17–22CrossRefGoogle Scholar
  18. 18.
    Czosnyka M, Czosnyka Z, Momjian S, Pickard JD (2004) Cerebrospinal fluid dynamics. Physiol Meas 25:R51–R76CrossRefGoogle Scholar
  19. 19.
    Czosnyka M, Czosnyka Z, Whitehouse H, Pickard JD (1997) Hydrodynamic properties of hydrocephalus shunts: United Kingdom shunt evaluation laboratory. J Neurol Neurosurg Psychiatry 62:43–50Google Scholar
  20. 20.
    Czosnyka M, Whitehouse H, Smielewski P, Simac S, Pickard JD (1996) Testing of cerebrospinal compensatory reserve in shunted and non-shunted patients: a guide to interpretation based on an observational study. J Neurol Neurosurg Psychiatry 60:549–558Google Scholar
  21. 21.
    Czosnyka Z, Czosnyka M, Richards HK, Pickard JD (1998) Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro. Neurosurgery 42, 327–333; discussion 333–334Google Scholar
  22. 22.
    Czosnyka ZH, Czosnyka M, Pickard JD (2002) Shunt testing in vivo: a method based on the data from the UK shunt evaluation laboratory 81:27–30Google Scholar
  23. 23.
    Czosnyka ZH, Czosnyka M, Whitfield PC, Donovan T, Pickard JD (2002) Cerebral autoregulation among patients with symptoms of hydrocephalus. Neurosurgery 50:526–532; discussion 532–533Google Scholar
  24. 24.
    Davson H, Welch K, Segal MB (1987) The physiology and pathophysiology of cerebrospinal fluid. Churchill Livingstone, New YorkGoogle Scholar
  25. 25.
    Eide PK (2005) Assessment of childhood intracranial pressure recordings using a new method of processing intracranial pressure signals. Pediatr Neurosurg 41:122–130CrossRefGoogle Scholar
  26. 26.
    Eklund A, Lundkvist B, Koskinen LOD, Malm J (2004) Infusion technique can be used to distinguish between dysfunction of a hydrocephalus shunt system and a progressive dementia. Med Biol Eng Comput 42:644–649CrossRefGoogle Scholar
  27. 27.
    Ekstedt J (1977) CSF hydrodynamic studies in man. 1. Method of constant pressure CSF infusion. J Neurol Neurosurg Psychiatry 40:105–119Google Scholar
  28. 28.
    Ekstedt J (1978) CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry 41:345–353Google Scholar
  29. 29.
    Fishman RA (1992) Cerebrospinal fluid in diseases of the nervous system, 2nd edn. Saunders Company, PhiladelphiaGoogle Scholar
  30. 30.
    Friden H, Ekstedt J (1982) Instrumentation for cerebrospinal fluid hydrodynamic studies in man. Med Biol Eng Comput 20:167–180CrossRefGoogle Scholar
  31. 31.
    Fung YC (1993) Biomechanics mechanical properties of living tissues. 2nd edn. Springer, HeidelbergGoogle Scholar
  32. 32.
    Gjerris F, Borgesen SE (1992) Patophysiology of CSF circulation. In: Crockard A, Hayward A, Hoff JT (eds) The scientific basis of clinical practice. Neurosurgery. Blackwell, Oxford, pp 146–174Google Scholar
  33. 33.
    Gjerris F, Borgesen SE, Schmidt K, Sorensen PS, Gyring J (1986) Measurement of conductance to cerebrospinal fluid outflow by the steady-state perfusion method in patients with normal or increased intracranial pressure. In: Miller JD, Teasdale JO, Rowan SL (eds) Intracranial presssure VI. Springer, Heidelberg, pp 411–416Google Scholar
  34. 34.
    Hakim S, Adams RD (1965) The special clinical problem symptomatic hydrocephalus with “normal” cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 2:117–126CrossRefGoogle Scholar
  35. 35.
    Hayashi M, Handa Y, Kobayashi H, Kawano H, Ishii H, Hirose S (1991) Plateau-wave phenomenon (I). Correlation between the appearance of plateau waves and CSF circulation in patients with intracranial hypertension. Brain 114(Pt 6):2681–2691CrossRefGoogle Scholar
  36. 36.
    Iddon JL, Pickard JD, Cross JJ, Griffiths PD, Czosnyka M, Sahakian BJ (1999) Specific patterns of cognitive impairment in patients with idiopathic normal pressure hydrocephalus and Alzheimer’s disease: a pilot study. J Neurol Neurosurg Psychiatry 67:723–732Google Scholar
  37. 37.
    Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2CrossRefGoogle Scholar
  38. 38.
    Kahlon B, Sundbarg G, Rehncrona S (2002) Comparison between the lumbar infusion and CSF tap tests to predict outcome after shunt surgery in suspected normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 73:721–726CrossRefGoogle Scholar
  39. 39.
    Kasprowicz M, Czosnyka Z, Czosnyka M, Momjian S, Juniewicz H, Pickard JD (2004) Slight elevation of baseline intracranial pressure after fluid infusion into CSF space in patients with hydrocephalus. Neurol Res 26:628–631CrossRefGoogle Scholar
  40. 40.
    Katzman R, Hussey F (1970) A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology 20:534–544Google Scholar
  41. 41.
    Kosteljanetz M (1985) Resistance to outflow of cerebrospinal fluid determined by bolus injection technique and constant rate steady state infusion in humans. Neurosurgery 16:336–340CrossRefGoogle Scholar
  42. 42.
    Loth F, Yardimci MA, Alperin N (2001) Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng 123:71–9CrossRefGoogle Scholar
  43. 43.
    Lundkvist B, Eklund A, Koskinen LOD, Malm J (2003) An adjustable CSF shunt. Advices for clinical use. Acta Neurol Scand 108:38–42CrossRefGoogle Scholar
  44. 44.
    Lundkvist B, Eklund A, Kristensen B, Fagerlund M, Koskinen LO, Malm J (2001) Cerebrospinal fluid hydrodynamics after placement of a shunt with an antisiphon device: a long-term study. J Neurosurg 94:750–756Google Scholar
  45. 45.
    Magendie F (1842) Recherches physiologiques et cliniques sur le liquide céphalorachidien ou cérébro-spinal. Librairie Medicale de Mequigenon-Marvis Files, ParisGoogle Scholar
  46. 46.
    Maksymowicz W, Czosnyka M, Koszewski W, Szymanska A, Traczewski W (1989) The role of cerebrospinal compensatory parameters in the estimation of functioning of implanted shunt system in patients with communicating hydrocephalus (preliminary report). Acta Neurochir (Wien) 101:112–116CrossRefGoogle Scholar
  47. 47.
    Malm J, Eklund A (2006) Idiopatic normal pressure hydrocephalus. Pract Neurol 6:14–27CrossRefGoogle Scholar
  48. 48.
    Malm J, Kristensen B, Fagerlund M, Koskinen LO, Ekstedt J (1995) Cerebrospinal fluid shunt dynamics in patients with idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 58:715–723Google Scholar
  49. 49.
    Malm J, Kristensen B, Karlsson T, Fagerlund M, Elfverson J, Ekstedt J (1995) The predictive value of cerebrospinal fluid dynamic tests in patients with th idiopathic adult hydrocephalus syndrome. Arch Neurol 52:783–789Google Scholar
  50. 50.
    Malm J, Lundkvist B, Eklund A, Koskinen LO, Kristensen B (2004) CSF outflow resistance as predictor of shunt function. A long-term study. Acta Neurol Scand 110:154–160CrossRefGoogle Scholar
  51. 51.
    Marmarou A, Shulman K, Rosende RM (1978) A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg 48:332–344Google Scholar
  52. 52.
    Marmarou A, Young HF, Aygok GA, Sawauchi S, Tsuji O, Yamamoto T, Dunbar J (2005) Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg 102:987–997Google Scholar
  53. 53.
    Mccomb JG, Davson H, Hyman S, Weiss MH (1982) Cerebrospinal fluid drainage as influenced by ventricular pressure in the rabbit. J Neurosurg 56:790–797Google Scholar
  54. 54.
    Meier U, Kiefer M, Sprung C (2003) Normal-pressure hydrocephalus—pathology, pathophysiology, diagnostics, therapeutics and clinical course. PVV Science Publications, RatingenGoogle Scholar
  55. 55.
    Meier U, Zeilinger FS, Kintzel D (1999) Diagnostic in normal pressure hydrocephalus: A mathematical model for determination of the ICP-dependent resistance and compliance. Acta Neurochir (Wien) 141:941–947; discussion 947–948Google Scholar
  56. 56.
    Momjian S, Czosnyka Z, Czosnyka M, Pickard JD (2004) Link between vasogenic waves of intracranial pressure and cerebrospinal fluid outflow resistance in normal pressure hydrocephalus. Br J Neurosurg 18:56–61CrossRefGoogle Scholar
  57. 57.
    Momjian S, Owler BK, Czosnyka Z, Czosnyka M, Pena A, Pickard JD (2004) Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain 127:965–972CrossRefGoogle Scholar
  58. 58.
    Piper I, Dunn L, Contant C, Yau Y, Whittle I, Citerio G, Kiening K, Schvning W, Ng S, Poon W, Enblad P, Nilsson P (2000) Multi-centre assessment of the Spiegelberg compliance monitor: preliminary results. Acta Neurochir Suppl 76:491–494Google Scholar
  59. 59.
    Shapiro K, Marmarou A, Conway E (1983) Comparison of bolus and constant infusion techniques for determining the resistance of the absorption of CSF. In: Ishii S, Nagai H, Brock M (eds) Intracranial pressure V, Springer, HeidelbergGoogle Scholar
  60. 60.
    Smielewski P, Czosnyka M, Roszkowski M, Walencik A (1995) Identification of the cerebrospinal compensatory mechanisms via computer-controlled drainage of the cerebrospinal fluid. Childs Nerv Syst 11:297–300CrossRefGoogle Scholar
  61. 61.
    Stephensen H, Andersson N, Eklund A, Malm J, Tisell M, Wikkelso C (2005) Objective B wave analysis in 55 patients with non-communicating and communicating hydrocephalus. J Neurol Neurosurg Psychiatry 76:965–970CrossRefGoogle Scholar
  62. 62.
    Sullivan HG, Miller JD, Griffith RL 3rd, Carter W Jr, Rucker S (1979) Bolous versus steady-state infusion for determination of CSF outflow resistance. Ann Neurol 5:228–238CrossRefGoogle Scholar
  63. 63.
    Takeuchi T, Kasahara E, Iwasaki M, Mima T, Mori K (2000) Indications for shunting in patients with idiopathic normal pressure hydrocephalus presenting with dementia and brain atrophy (atypical idiopathic normal pressure hydrocephalus). Neurol Med Chir (Tokyo) 40, 38–46; discussion 46–47Google Scholar
  64. 64.
    Tans JT, Poortvliet DC (1985) CSF outflow resistance and pressure–volume index determined by steady-state and bolus infusions. Clin Neurol Neurosurg 87:159–165CrossRefGoogle Scholar
  65. 65.
    Taylor R, Czosnyka Z, Czosnyka M, Pickard JD (2002) A laboratory model of testing shunt performance after implantation. Br J Neurosurg 16:30–35CrossRefGoogle Scholar
  66. 66.
    Tsunoda A, Mitsuoka H, Bandai H, Endo T, Arai H, Sato K (2002) Intracranial cerebrospinal fluid measurement studies in suspected idiopathic normal pressure hydrocephalus, secondary normal pressure hydrocephalus, and brain atrophy. J Neurol Neurosurg Psychiatry 73:552–555CrossRefGoogle Scholar
  67. 67.
    Tullberg M, Mansson JE, Fredman P, Lekman A, Blennow K, Ekman R, Rosengren LE, Tisell M, Wikkelso C (2000) CSF sulfatide distinguishes between normal pressure hydrocephalus and subcortical arteriosclerotic encephalopathy. J Neurol Neurosurg Psychiatry 69:74–81CrossRefGoogle Scholar
  68. 68.
    Vanneste J, Van Acker R (1990) Normal pressure hydrocephalus: did publications alter management? J Neurol Neurosurg Psychiatry 53:564–568CrossRefGoogle Scholar
  69. 69.
    Vanneste JA (2000) Diagnosis and management of normal-pressure hydrocephalus. J Neurol 247:5–14CrossRefGoogle Scholar
  70. 70.
    Weller RO, Nicoll JA (2003) Cerebral amyloid angiopathy: pathogenesis and effects on the ageing and Alzheimer brain. Neurol Res 25:611–616CrossRefGoogle Scholar
  71. 71.
    Wikkelso C, Andersson H, Blomstrand C, Lindqvist G, Svendsen P (1986) Normal pressure hydrocephalus. Predictive value of the cerebrospinal fluid tap-test. Acta Neurol Scand 73:566–573Google Scholar
  72. 72.
    Williams MA, Razumovsky AY, Hanley DF (1998) Evaluation of shunt function in patients who are never better, or better than worse after shunt surgery for NPH. Acta Neurochir Suppl 71:368–370Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2007

Authors and Affiliations

  • Anders Eklund
    • 1
    Email author
  • Peter Smielewski
    • 2
  • Iain Chambers
    • 3
  • Noam Alperin
    • 4
  • Jan Malm
    • 5
  • Marek Czosnyka
    • 2
  • Anthony Marmarou
    • 6
  1. 1.Department of Biomedical Engineering and InformaticsUmeå University HospitalUmeåSweden
  2. 2.Academic Neurosurgical Unit, Department of NeuroscienceAddenbrooke’s HospitalCambridgeUK
  3. 3.Regional Medical Physics DepartmentThe James Cook University HospitalMiddlesbroughUK
  4. 4.Department of RadiologyUniversity of IllinoisChicagoUSA
  5. 5.Department of Clinical NeuroscienceUmeå UniversityUmeåSweden
  6. 6.Department of NeurosurgeryMedical College of Virginia Commonwealth UniversityRichmondUSA

Personalised recommendations