Advertisement

Enhanced T-ray signal classification using wavelet preprocessing

  • X. X. Yin
  • K. M. Kong
  • J. W. Lim
  • B. W.-H. Ng
  • B. Ferguson
  • S. P. Mickan
  • D. AbbottEmail author
Short Communication

Abstract

This study demonstrates the application of one-dimensional discrete wavelet transforms in the classification of T-ray pulsed signals. Fast Fourier transforms (FFTs) are used as a feature extraction tool and a Mahalanobis distance classifier is employed for classification. Soft threshold wavelet shrinkage de-noising is used and plays an important role in de-noising and reconstruction of T-ray pulsed signals. An iterative algorithm is applied to obtain three optimal frequency components and to achieve preferred classification performance.

Keywords

Mahalanobis distance classifier Wavelet denoising T-rays 

References

  1. 1.
    Donoho DL (1995) De-noising by soft thresholding. IEEE Trans Inf Theory 41(3):613–627zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ferguson B, Abbott D (2001) Wavelet de-noising of optical terahertz pulse imaging data. Fluct Noise Lett 1(2):L65–L70CrossRefGoogle Scholar
  3. 3.
    Ferguson B, Wang S, Zhong H, Abbott D, Zhang XC (2003) Powder retection with T-ray imaging. Proc SPIE Terahertz Mil Secur Appl 5070:7–16Google Scholar
  4. 4.
    Fukunaga K, Hummels DM (1989) Leave-one-out procedures for nonparametric error estimates. IEEE Trans Pattern Anal Mach Intell II(4):421–423CrossRefGoogle Scholar
  5. 5.
    Löffler T, Siebert K, Czasch S, Bauer H Tand Roskos (2002) Visualization and classification in biomedical terahertz pulsed imaging. Phys Med Biol 47(2002):3847–3852CrossRefGoogle Scholar
  6. 6.
    Mallat SG (1999) A wavelet tour of signal processing. Academic, San DiegozbMATHGoogle Scholar
  7. 7.
    Mittleman D, Gupta M, Neelamani R, Baraniuk G, Rudd V, Koch M (1999) Recent advances in terahertz imaging. Appl Phys B Lasers Opt 68:1085–1094CrossRefGoogle Scholar
  8. 8.
    Qian S (2002) Time-frequency and wavelet transforms, 1st edn. Prentice Hall, Inc., New JerseyGoogle Scholar
  9. 9.
    Schürmann J (1996) Pattern classification: a unified view of statistical and neural approaches. Wiley, New YorkGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2007

Authors and Affiliations

  • X. X. Yin
    • 1
  • K. M. Kong
    • 1
  • J. W. Lim
    • 1
  • B. W.-H. Ng
    • 1
  • B. Ferguson
    • 1
    • 2
  • S. P. Mickan
    • 1
  • D. Abbott
    • 1
    Email author
  1. 1.Centre for Biomedical Engineering and School of Electrical and Electronic EngineeringThe University of AdelaideAdelaideAustralia
  2. 2.Tenix Defence Systems Pty LtdAdelaideAustralia

Personalised recommendations