Medical and Biological Engineering and Computing

, Volume 44, Issue 11, pp 983–997 | Cite as

Image reconstruction for positron emission tomography using fuzzy nonlinear anisotropic diffusion penalty

  • Hongqing Zhu
  • Huazhong Shu
  • Jian Zhou
  • Christine Toumoulin
  • Limin Luo
Original Article

Abstract

Iterative algorithms such as maximum likelihood-expectation maximization (ML-EM) become the standard for the reconstruction in emission computed tomography. However, such algorithms are sensitive to noise artifacts so that the reconstruction begins to degrade when the number of iterations reaches a certain value. In this paper, we have investigated a new iterative algorithm for penalized-likelihood image reconstruction that uses the fuzzy nonlinear anisotropic diffusion (AD) as a penalty function. The proposed algorithm does not suffer from the same problem as that of ML-EM algorithm, and it converges to a low noisy solution even if the iteration number is high. The fuzzy reasoning instead of a nonnegative monotonically decreasing function was used to calculate the diffusion coefficients which control the whole diffusion. Thus, the diffusion strength is controlled by fuzzy rules expressed in a linguistic form. The proposed method makes use of the advantages of fuzzy set theory in dealing with uncertain problems and nonlinear AD techniques in removing the noise as well as preserving the edges. Quantitative analysis shows that the proposed reconstruction algorithm is suitable to produce better reconstructed images when compared with ML-EM, ordered subsets EM (OS-EM), Gaussian-MAP, MRP, TV-EM reconstructed images.

Keywords

Fuzzy Nonlinear anisotropic diffusion Positron emission tomography (PET) Image reconstruction Maximum likelihood-expectation maximization (ML-EM) 

Notes

Acknowledgments

This work was supported by National Basic Research Program of China under grant No. 2003CB716102 and Program for New Century Excellent Talents in University under grant No. NCET-04-0477. It has been carried out in the frame of the CRIBs, a joint international laboratory associating Southeast University, the University of Rennes 1 and INSERM, with a grant provided by the French Consulate in Shanghai. We thank the anonymous referees for their careful review and valuable comments to improve the quality of the paper.

References

  1. 1.
    Ahn S, Fessler JA (2003) Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms. IEEE Trans Med Imaging 22:613–626CrossRefGoogle Scholar
  2. 2.
    Aja S, Alberola C, Ruiz J (2001) Fuzzy anisotropic diffusion for speckle filtering. In: IEEE proceedings of international conference acoustics, speech, and signal processing (ICASSP), pp 1261–1264Google Scholar
  3. 3.
    Alenius S, Ruotsalainen U (2002) Generalization of median root prior reconstruction. IEEE Trans Med Imaging 21:1413–1420CrossRefGoogle Scholar
  4. 4.
    Anderson JMM, Srinivasan R, Mair BA, Votaw JR (2005) Accelerated penalized weighted least-squares and maximum likelihood algorithms for reconstructing transmission images from PET transmission data. IEEE Trans Med Imaging 24:337–351CrossRefGoogle Scholar
  5. 5.
    Black MJ, Sapiro G, Marimont DH, Heeger D (1998) Robust anisotropic diffusion. IEEE Trans Image Process 7:421–432CrossRefGoogle Scholar
  6. 6.
    Browne JA, Pierro ARDe (1996) A row-action alternative to the EM algorithm for maximizing likelihoods in emission tomography. IEEE Trans Med Imaging 15:687–699CrossRefGoogle Scholar
  7. 7.
    Byrne CL (1998) Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative methods. IEEE Trans Image Process 7:100–109MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen RC, Yu PT (1999) Fuzzy selection filters for image restoration with neural learning. IEEE Trans Signal Process 47:1446–1450CrossRefGoogle Scholar
  9. 9.
    Chlewicki W, Hermansin F, Hansen SB (2004) Noise reduction and convergence of Bayesian algorithms with blobs based on the Huber function and median root prior. Phys Med Biol 49:4717–4730CrossRefGoogle Scholar
  10. 10.
    Demirkaya O (2002) Anisotropic diffusion filtering of PET attenuation data to improve emission images. Phys Med Biol 47:271–278CrossRefGoogle Scholar
  11. 11.
    Demirkaya O (2004) Post-reconstruction filtering of positron emission tomography whole-body emission images and attenuation maps using nonlinear diffusion filtering. Acad Radiol 11:1105–1114CrossRefGoogle Scholar
  12. 12.
    Denisova NV (2004) Bayesian reconstruction in SPECT with entropy prior and iterative statistical regularization. IEEE Trans Nucl Sci 51:137–141CrossRefGoogle Scholar
  13. 13.
    Fessler JA (1994) Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE Trans Med Imaging 13:290–300CrossRefGoogle Scholar
  14. 14.
    Fessler JA (1997) Grouped coordinate descent algorithms for robust edge-preserving image restoration. In: Proceedings of the SPIE 97, Im Recon Restor II, vol 3170, pp 184–194Google Scholar
  15. 15.
    Fessler JA, Hero AO (1994) Space-alternating generalized expectation-maximization algorithm. IEEE Trans Signal Process 42:2664–2677CrossRefGoogle Scholar
  16. 16.
    Fessler JA, Ficaro EP, Clinthorne NH, Lange K (1997) Grouped-coordinate ascent algorithms for penalized-likelihood transmission image reconstruction. IEEE Trans Med Imaging 16:166–175CrossRefGoogle Scholar
  17. 17.
    Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of Images. IEEE Trans Pattern Anal Mach Intell 6:721–741MATHCrossRefGoogle Scholar
  18. 18.
    Green PJ (1990) Bayesian reconstruction from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 9:84–93CrossRefGoogle Scholar
  19. 19.
    Hsiao IT, Rangarajan A, Gindi G (2002) A provably convergent OS-EM like reconstruction algorithm for emission tomography. In: Proceedings of the SPIE 4684, medical imaging 2002: image proceedings, pp 10–19Google Scholar
  20. 20.
  21. 21.
    Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609CrossRefGoogle Scholar
  22. 22.
    Jin JS, Wang Y, Hiller J (2000) An adaptive nonlinear diffusion algorithm for filtering medical images. IEEE Trans Inform Technol Biomed 4:298–305CrossRefGoogle Scholar
  23. 23.
    Kadrmas DJ (2001) Statistically regulated and adaptive EM reconstruction for emission computed tomography. IEEE Trans Nucl Sci 48:790–798CrossRefGoogle Scholar
  24. 24.
    Kobashi S, Fujiki Y, Matsui M, Inoue N, Kondo K, Hata Y, Sawada T (2006) Interactive segmentation of the cerebral lobes with fuzzy inference in 3T MR image. IEEE Trans Syst Man Cybern B 37:74–86CrossRefGoogle Scholar
  25. 25.
    Mondal PP, Rajan K (2004) Image reconstruction by conditional entropy maximization for PET system. IEE Proc Vis Image Signal Process 151:352–355CrossRefGoogle Scholar
  26. 26.
    Mondal PP, Rajan K (2005) Fuzzy-rule-based image reconstruction for positron emission tomography. J Opt Soc Am A 22:1763–1771MathSciNetCrossRefGoogle Scholar
  27. 27.
    Panin VY, Zeng GL, Gullberg GT (1999) Total variation regulated EM algorithm. IEEE Trans Nucl Sci 46:2202–2210CrossRefGoogle Scholar
  28. 28.
    Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639CrossRefGoogle Scholar
  29. 29.
    Riddell C, Benali H, Buvat I (2004) Diffusion regularization for iterative reconstruction in emission tomography. IEEE Trans Nucl Sci 51:712–718CrossRefGoogle Scholar
  30. 30.
    Russo F (2002) An image enhancement techniques combining sharpening and noise reduction. IEEE Trans Instrum Meas 51:824–828CrossRefGoogle Scholar
  31. 31.
    Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag MI-1 2:113–122CrossRefGoogle Scholar
  32. 32.
    Sohlberg A, Ruotsalainen U, Watabe H, Iida H, Kuikka JT (2003) Accelerated median root prior reconstruction for pinhole single-photon emission tomography (SPET). Phys Med Biol 48:1957–1969CrossRefGoogle Scholar
  33. 33.
    Ville DVanDe, Nachtegael M, Weken DVD, Kerre EE, Philips W, Lemahieu I (2003) Noise reduction by fuzzy image filtering. IEEE Trans Fuzzy Syst 11:429–435CrossRefGoogle Scholar
  34. 34.
    Wang L-X, Mendel JM (1992) Generating fuzzy rules by learning from examples. IEEE Trans Syst Man Cybern 22:1411–1427MathSciNetGoogle Scholar
  35. 35.
    Yuan B, Klir G (1997) Fuzzy sets and fuzzy logic. Prentice-Hall International, New JerseyMATHGoogle Scholar
  36. 36.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Zaidi H, Diaz-Gomez M, Boudraa AE, Slosman DO (2002) Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging. Phys Med Biol 47:1143–1160CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2006

Authors and Affiliations

  • Hongqing Zhu
    • 1
    • 4
  • Huazhong Shu
    • 1
    • 3
  • Jian Zhou
    • 1
    • 3
  • Christine Toumoulin
    • 2
    • 3
  • Limin Luo
    • 1
    • 3
  1. 1.Laboratory of Image Science and Technology, Department of Computer Science and EngineeringSoutheast UniversityNanjingPeople’s Republic of China
  2. 2.Laboratoire Traitement du Signal et de l’ImageUniversité de Rennes I – INSERM U642RennesFrance
  3. 3.Centre de Recherche en Information Biomédicale Sino-français (CRIBs)Rennes CedexFrance
  4. 4.ShanghaiPeople’s Republic of China

Personalised recommendations