Advertisement

Soft tissue modelling through autowaves for surgery simulation

  • Yongmin ZhongEmail author
  • Bijan Shirinzadeh
  • Gursel Alici
  • Julian Smith
Original Article

Abstract

Modelling of soft tissue deformation is of great importance to virtual reality based surgery simulation. This paper presents a new methodology for simulation of soft tissue deformation by drawing an analogy between autowaves and soft tissue deformation. The potential energy stored in a soft tissue as a result of a deformation caused by an external force is propagated among mass points of the soft tissue by non-linear autowaves. The novelty of the methodology is that (i) autowave techniques are established to describe the potential energy distribution of a deformation for extrapolating internal forces, and (ii) non-linear materials are modelled with non-linear autowaves other than geometric non-linearity. Integration with a haptic device has been achieved to simulate soft tissue deformation with force feedback. The proposed methodology not only deals with large-range deformations, but also accommodates isotropic, anisotropic and inhomogeneous materials by simply changing diffusion coefficients.

Keywords

Virtual reality Surgery simulation Soft tissue deformation Autowaves Haptic feedback and analogous systems 

Notes

Acknowledgments

This research is supported by the Australian Research Council (ARC) Discovery grant (ARC Discovery: DP034946).

References

  1. 1.
    Arena P, Fortuna L, Branciforte M (1999) Reaction-diffusion CNN algorithms to generate and control artificial locomotion. IEEE Trans Circuit Syst 46(2):253–260CrossRefGoogle Scholar
  2. 2.
    Arena P, Basile A, Fortuna L, Frasca M (2004) CNN wave based computation for robot navigation planning. Proc Int Symp Circuit Syst 5:V-500–V-503Google Scholar
  3. 3.
    Baraff D, Witkin A (1998) Large steps in cloth simulation. In: Proceedings of international conference on computer graphics and interactive techniques, Orlando, USA, pp 43–54Google Scholar
  4. 4.
    Basdogan C, De S, Kim J, Muniyandi M, Kim H, Srinivasan MA (2004) Haptics in minimally invasive surgical simulation and training. IEEE Comput Graph Appl 24(2):56–64CrossRefGoogle Scholar
  5. 5.
    Bejan A (1993) Heat transfer. Wiley, New YorkGoogle Scholar
  6. 6.
    Bockholt U, Müller W, Ecke U, Klimek L (1999) Real-time simulation of tissue deformation for the nasal endoscopy simulator (NES). Comput Aid Surg 4(5):281–285CrossRefGoogle Scholar
  7. 7.
    Bro-Nielsen M (1998) Finite element modeling in surgery simulation. Proc IEEE 86(3):490–503CrossRefGoogle Scholar
  8. 8.
    Choi K, Sun H, Heng PA (2003) Interactive deformation of tissues with haptic feedback for medical learning. IEEE Trans Inform Technol Biomed 7(4):358–363CrossRefGoogle Scholar
  9. 9.
    Chua LO, Yang L (1988) Cellular neural network: theory. IEEE Trans Circuit Syst 35(10):1257–1272zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chua LO, Hasler M, Moschytz GS, Neirynck J (1993) Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation. IEEE Trans Circuit Syst 40(3):147–156zbMATHGoogle Scholar
  11. 11.
    Ciarlet PG (1988) Mathematical elasticity. Vol 1: Three-dimensional elasticity. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Vis Comput Graph 5(1):62–73CrossRefGoogle Scholar
  13. 13.
    Cotin S, Delingette H, Ayache N (2000) A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. Vis Comput 16(8):437–452zbMATHCrossRefGoogle Scholar
  14. 14.
    Davydov VA, Davydov NV, Morozov VG, Stolyarov MN, Yamaguchi T (2004) Autowaves in the moving excitable media. Condens Matter Phys 7(3):565–578Google Scholar
  15. 15.
    Debunne G, Desbrun M, Cani MP, Barr AH (2001) Dynamic real-time deformations using space and time adaptive sampling. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, Los Angeles, USA, pp 31–36Google Scholar
  16. 16.
    Foskey M, Otaduy MA, Lin MC (2002) ArtNova: touch-enabled 3D model design. In: Proceedings of IEEE virtual reality 2002, Orlando, USA, pp 119–126Google Scholar
  17. 17.
    Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. 18.
    Grekhova MT (1981) Autowave processes in systems with diffusion. Academy of Science, USSR, GorkyGoogle Scholar
  19. 19.
    James D, Pai D (1999) Artdefo accurate real time deformable objects. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, Los Angeles, USA, pp. 65–72Google Scholar
  20. 20.
    Karniadakis GE, Robert M (2003) Parallel Scientific Computing in C++ and MPI: a seamless approach to parallel algorithms and their implementation. Cambridge University Press, New YorkzbMATHGoogle Scholar
  21. 21.
    Kenedi RM, Gibson T, Evans JH, Barbenel JC (1975) Tissues mechanics. Phys Med Biol 20(5):699–717CrossRefGoogle Scholar
  22. 22.
    Kerdok AE, Cotin SM, Ottensmeyer MP, Galea AM, Howe RD, Dawson SL (2003) Truth cube: establishing physical standards for soft tissue simulation. Med Image Anal 7(3):283–291CrossRefGoogle Scholar
  23. 23.
    Kozek T, Chua LO, Roska T, Wolf D, Tetzlaff R, Puffer F, Karoly Lotz (1995) Simulating nonlinear waves and partial differential equations via CNN–Part II: typical examples. IEEE Trans Circuit Syst 42(10):816–820CrossRefGoogle Scholar
  24. 24.
    Krinsky VI, Biktashev VN, Efimov IR (1991) Autowave principles for parallel image processing. Physics D 49:247–253CrossRefGoogle Scholar
  25. 25.
    Maurel W, Wu Y, Thalmann NMTD (1998) Biochemical models for tissue simulation. ESPRIT Basic Research Series, Springer, Berlin Heidelberg New YorkGoogle Scholar
  26. 26.
    Meier U, Lopez O, Monserrat C, Juan MC, Alcaniz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Meth Program Biomed 77(3):183–197CrossRefGoogle Scholar
  27. 27.
    Monserrat C, Meier U, Alcaniz M, Chinesta F, Juan MC (2001) A new approach for the real-time simulation of tissue deformations in surgery simulation. Comput Meth Program Biomed 64:77–85CrossRefGoogle Scholar
  28. 28.
    Murray JD (1989) Mathematical biology. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  29. 29.
    Sensable Technologies (2004) OpenHaptics ToolKit-Programmer’s GuideGoogle Scholar
  30. 30.
    Ottensmeyer MP (2003) In vivo measurement of solid organ visco-elastic properties. In: Westwood JD, Hoffman HM, Robb RA, Stredney D (eds) Proceedings of medicine meets virtual reality 02/10. IOS Press, Newport Beach, pp 328–333Google Scholar
  31. 31.
    Perez-Munuzuri V, Perez-Villar V, Chua LO (1993) Autowaves for image processing on a two-dimensional CNN array of excitable nonlinear circuits: flat and wrinkled labyrinths. IEEE Trans Circuit Syst 40(3):174–181zbMATHGoogle Scholar
  32. 32.
    Picinbono G, Lombardo J-C, Delingette H, Ayache N (2002) Imporving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. J Vis Comput Anim 13:147–167zbMATHCrossRefGoogle Scholar
  33. 33.
    Picinbono G, Delingette H, Ayache N (2003) Non-linear anisotropic elasticity for real-time surgery simulation. Graph Models 65(5):305–321zbMATHCrossRefGoogle Scholar
  34. 34.
    Popov EP (1990) Engineering mechanics of solids. Prentice-Hall, Englewood CliffsGoogle Scholar
  35. 35.
    Roska T, Chua LO, Wolf D, Kozek T, Tetzlaff R, Puffer F (1995) Simulation nonlinear waves and partial differential equations via CNN—Part I: Basic Techniques. IEEE Trans Circuit Syst 42(10):807–815CrossRefGoogle Scholar
  36. 36.
    Rotnes JS, Kaasa J, Westgaard G, Eriksen EM, Hvidsten PQ, Strom K, Sorhus V, Halbwachs Y, Elle OJ, Fosse E (2001) Realism in surgical simulators with free-form geometric modeling. Int Congr Ser 1230:1032–1037CrossRefGoogle Scholar
  37. 37.
    Schwartz J-M, Denninger M, Rancourt D, Moisan C, Laurendeau D (2005) Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation. Med Image Anal 9(2):103–112CrossRefGoogle Scholar
  38. 38.
    Slavova A (2003) Cellular neural networks: dynamics and modelling. Kluwer, DordrechtzbMATHGoogle Scholar
  39. 39.
    Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. Comput Graph 21(4):205–214CrossRefGoogle Scholar
  40. 40.
    Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method. Wiley, New YorkGoogle Scholar
  41. 41.
    Zhang Y, Prakash EC, Sung E (2004) Face alive. J Vis Language Comput 15(2):125–160CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2006

Authors and Affiliations

  • Yongmin Zhong
    • 1
    Email author
  • Bijan Shirinzadeh
    • 1
  • Gursel Alici
    • 2
  • Julian Smith
    • 3
  1. 1.Robotics and Mechatronics Research Laboratory, Department of Mechanical EngineeringMonash UniversityClaytonAustralia
  2. 2.School of Mechanical, Materials, and Mechatronics EngineeringUniversity of WollongongWollongongAustralia
  3. 3.Department of Surgery, Monash Medical CentreMonash UniversityClaytonAustralia

Personalised recommendations