Classification of the long-QT syndrome based on discriminant analysis of T-wave morphology

  • J. J. Struijk
  • J. K. Kanters
  • M. P. Andersen
  • T. Hardahl
  • C. Graff
  • M. Christiansen
  • E. Toft
Original Article

Abstract

The long QT syndrome (LQTS) is a genetic disorder, typically characterized by a prolonged QT interval in the ECG due to abnormal cardiac repolarization. LQTS may lead to syncopal episodes and sudden cardiac death. Various parameters based on T-wave morphology, as well as the QT interval itself have been shown to be useful discriminators, but no single ECG parameter has been sufficient to solve the diagnostic problem. In this study we present a method for discrimination among persons with a normal genotype and those with mutations in the KCNQ1 (KvLQT1 or LQT1) and KCNH2 (HERG or LQT2) genes on the basis of parameters describing T-wave morphology in terms of duration, asymmetry, flatness and amplitude. Discriminant analyses based on 4 or 5 parameters both resulted in perfect discrimination in a learning set of 36 subjects. In both cases cross-validation of the resulting classifiers showed no misclassifications either.

Keywords

Discriminant analysis ECG HERG KCNH2 KvLQT1 KCNQ1 Long QT syndrome T-wave 

Notes

Acknowledgment

We thank Knud Larsen for his help with the conversion of SCP files (Standard Communication Protocol) to MAT files (MatLab data format).

References

  1. 1.
    Acar B (1999) New approaches to T-wave analysis from surface ECG. Card Electrophysiol Rev 3:319–323CrossRefGoogle Scholar
  2. 2.
    Alberti M (1990) Electrocardiographic precordial interlead variability in normal individuals and patients with long QT syndrome. Comp Cardiol 17:475–478Google Scholar
  3. 3.
    Bazett HC (1920) An analysis of the time-relations of electrocardiograms. Heart 7:353–370Google Scholar
  4. 4.
    Couderc J-Ph, Zareba W, Moss AJ (2003) Drug-induced changes of ventricular repolarization: new incentives for quantifying T wave morphology. Int J Bioelectromagn 5:167–170Google Scholar
  5. 5.
    Dibernardo D, Langley PH, Murray A (2002) Effect of changes in heart rate and in action potential duration on the electrocardiogram T wave shape. Physiol Meas 23:355–364CrossRefGoogle Scholar
  6. 6.
    Hair JF, Tatham RL, Anderson RE, Black W (1984) Multivariate data analysis. Prentice Hall, New JerseyGoogle Scholar
  7. 7.
    Jervell A, Lange-Nielsen F (1957) Congenital deaf-mutism, functional heart disease with prolongation of the QT interval, and sudden death. Am Heart J 89:378–379Google Scholar
  8. 8.
    Kanters JK, Larsen LA, Orholm M, Agner E, Andersen PS, Vuust J, Christiansen M (1998) Novel donor splice site mutation in the KVLQT1 gene is associated with long QT syndrome. J Cardiovasc Electrophysiol 9:620–624CrossRefGoogle Scholar
  9. 9.
    Kanters JK, Fanoe S, Larsen LA, Thomsen PEB, Toft E, Christiansen M (2004) T-wave morphology analysis distinguishes between KvLQT1 and HERG mutations in long QT syndrome. Heart Rhythm 1:285–292CrossRefGoogle Scholar
  10. 10.
    Laguna P, Thakor NV, Caminal P, Jane R, Yoon HR, Bayes de Luna A, Marti V, Guindo J (1990) New algorithm for QT interval analysis in 24-hour Holter ECG: performance and applications. Med Biol Eng Comput 28:67–73CrossRefGoogle Scholar
  11. 11.
    Larsen LA, Andersen PS, Kanters JK, Jacobsen JR, Vuust J, Christiansen M (1999) ‘A single strand conformation polymorphism/heteroduplex (SSCP/HD) method for detection of mutations in 15 exons of the KVLQT1 gene, associated with long QT syndrome’. Clin Chim Acta 280:113–125CrossRefGoogle Scholar
  12. 12.
    Larsen LA, Andersen PS, Kanters JK, Svendsen IH, Jacobsen JR, Vuust J, Wettrell G, Tranebjaerg L, Bathen J, Christiansen M (2001) Screening for mutations and polymorphisms in the genes KCNH2 and KCNE2 encoding the cardiac HERG/MiRP1 ion channel: implications for acquired and congenital long Q-T syndrome. Clin Chem 47:1390–1395Google Scholar
  13. 13.
    Locati EH, Zareba W, Moss AJ, Schwartz PJ, Vincent GM, Lehmann MH et al (1998) Age- and sex-related differences in clinical manifestations in patients with congenital long-QT syndrome findings from the International LQTS Registry. Circulation 97:2237–2244Google Scholar
  14. 14.
    Lupoglazoff JM, Denjoy I, Berthet M, Neyroud N, Demay L, Richard P, Hainque B, Vaksmann G, Klug D, Leenhardt A, Maillard G, Coumel P, Guicheney P (2001) Notched T waves on Holter recordings enhance detection of patients with LQT2 (HERG) mutations. Circulation 103:1095–1101Google Scholar
  15. 15.
    Merri M, Alberti M, Benhorin J, Hall WJ, Locati E, Moss AJ (1989) Quantitation of ventricular repolarization: a new approach. IEEE EMBS Conf 11:85–87Google Scholar
  16. 16.
    Moss AJ, Zarebra W, Benhorin J, Locati EH, Hall WJ, Robinson JL, Schwarz PJ, Towbin JA, Vincent GM, Lehmann MH (1995) ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 92:2929–2934Google Scholar
  17. 17.
    Padrini R (1999) Mathematical models of the T-wave shape. Card Electrophysiol Rev 3:314–318CrossRefGoogle Scholar
  18. 18.
    Padrini R, Butrous G, Statters D, Camm AJ, Malik M (2001) Morphological algebraic models of the TU-wave patterns in idiopathic long QT syndrome. Int J Cardiol 77:151–162CrossRefGoogle Scholar
  19. 19.
    Priori SG, Bloise R, Crotti L (2001) The long QT syndrome. Europace 3:16–27CrossRefGoogle Scholar
  20. 20.
    Romano C (1965) Congenital cardiac arrhythmia. Lancet 1:658–659CrossRefGoogle Scholar
  21. 21.
    Sasamori A (1994) A new approach to measure ventricular repolarization duration in 24-hour Holter ECG based on T-wave morphology classification. Comp Cardiol 21:589–592Google Scholar
  22. 22.
    Schwartz PJ (2001) Arrhythmias associated with the long QT syndrome. In: Malik M (ed) Risk of arrhythmia and sudden death. BMJ Books, LondonGoogle Scholar
  23. 23.
    Schwartz PJ, Moss AJ, Vincent GM, Crampton AS (1993a) Diagnostic criteria for the long QT syndrome: an update. Circulation 88:782–784Google Scholar
  24. 24.
    Schwartz PJ, Moss AJ, Vincent JM, Crampton RS (1993b) Diagnostic criteria for the long QT syndrome. An update. Circulation 88:782–784Google Scholar
  25. 25.
    Seber GAF (1984) Multivariate observations. Wiley, New YorkMATHGoogle Scholar
  26. 26.
    Vila JA, Yi Gang, Presedo JMR, Fernandez-Delgado M, Barro S, Malik M (2000) A new approach for TU-complex characterization. IEEE Tr BME 47:762–762Google Scholar
  27. 27.
    Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, Vanraay TJ, Shen J, Timothy KW, Vincent GM, De Jager T, Schwartz PJ, Towbin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12(1):17–23CrossRefGoogle Scholar
  28. 28.
    Ward OC (1965) The electrocardiographic abnormality in familial cardiac arrhythmia. Ir J Med Sci 6:553–557Google Scholar
  29. 29.
    Wehrens XH, Vos MA, Doevendans PA, Wellens HJ (2002) Novel insights in the congenital long QT syndrome’. Ann Intern Med 137:981–992Google Scholar
  30. 30.
    Zareba W, Moss AJ, Schwartz PJ, Vincent GM, Robinson JL, Priori SG et al (1998) Influence of genotype on the clinical course of the long-QT syndrome’: International Long-QT Syndrome Registry Research Group. N Engl J Med 339:960–5CrossRefGoogle Scholar
  31. 31.
    Zhang L, Timothy KW, Vincent GM, Lehmann MH, Fox JLC, Giuli LC, Shen J, Splawski I, Priori SG, Compton SJ, Yanowitz F, Benhorin J, Moss AJ, Schwartz PJ, Robinson JL, Wang Q, Zarebra W, Keating MT, Towbin JA, Napolitano C, Medina A (2000) Spectrum of ST-T wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. Circulation 102:2849–2855Google Scholar
  32. 32.
    Zipes DP, Jalife J (eds) (1995) Cardiac electrophysiology—from cell to bedside. W.B. Saunders, PhiladelphiaGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2006

Authors and Affiliations

  • J. J. Struijk
    • 1
  • J. K. Kanters
    • 2
    • 3
    • 4
    • 6
  • M. P. Andersen
    • 1
  • T. Hardahl
    • 1
  • C. Graff
    • 1
  • M. Christiansen
    • 2
    • 5
  • E. Toft
    • 1
    • 6
  1. 1.Department of Health Science and TechnologyCenter for Sensory Motor Interaction (SMI)AalborgDenmark
  2. 2.Danish Arrhythmia Research Center (DARC)CopenhagenDenmark
  3. 3.Gentofte University HospitalCopenhagenDenmark
  4. 4.Laboratory of Experimental CardiologyUniversity of CopenhagenCopenhagenDenmark
  5. 5.Department of Clinical BiochemistryStatens SeruminstitutCopenhagenDenmark
  6. 6.Department of Cardiology, Aalborg HospitalÅrhus University HospitalsAalborgDenmark

Personalised recommendations