Advertisement

Construction of protein–protein interaction network based on transcriptome profiling of ovine granulosa cells during the sheep’s anestrus phase

  • Reza Talebi
  • Ahmad Ahmadi
  • Fazlollah Afraz
Research Article

Abstract

BACKGROUND

Small antral follicles as the final reserve of folliculogenesis, are existed throughout the reproductive life span of sheep. However, the ovarian cycles of ewe cease in the anestrus phase. This study in thus was aimed to elucidate the ovarian small antral follicles transcriptome in the ewe’s anestrus phase.

METHODS

Granulosa cells of small antral follicles (#3 mm) were collected from ovaries of anestrous ewes under long days of summer in the non-breeding season as anestrus phase. Transcriptome profiling of these granulosa cells were obtained using the RNA-Seq technology. An integrative analysis was utilized to identify key regulatory genes whose may have potential impacts on intra-ovarian molecular activities.

RESULTS

Globally, 14506 genes were expressed whose higher expressions were belonged to genes that encoded ribosomal proteins. Top significant terms of gene ontology were pertained to protein translational processes. Apart of this, most of highly significant terms were also relevant to apoptotic process through extracellular vesicles, including apoptotic bodies and exosomes. Regarding to node effect property, UBA52 (ubiquitin A-52 residue ribosomal protein fusion product 1) and RPS5 (ribosomal proteins S5) contained in highest out-degree and in-degree, respectively.

CONCLUSION

Our data suggest that ribosomal mRNA/proteins could make the granulosa cells undergo a lot of changes from the point of view that ovarian activities are ceased in the anestrus phase.

Keywords

RNA-sequencing ovarian follicles anestrus phase protein-protein interaction network functional modules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

R.T. would like to special thanks to the Dr. Stéphane Fabre, PhD–HDR in INRA research center in Castanet-Tolosan, France, and the staff of the GeT-Genotoul genomic platform (https://doi.org/get/genotoul.fr) for the RNA sequencing, and Sarah Maman of the INRA Sigenae bioinformatics team for Galaxy support. R.T. also thanks Julien Sarry, technician assistance from INRA-GenPhySE research center in Castanet-Tolosan, France, for prepared the RNAseq libraries. Authors wanted to thank Dr. Abbas Farahavar, PhD in Bu-Ali Sina University of Hamedan, Iran, due to his assistances in collecting the mural granulosa cell. This work has been supported by a PhD grant from “Bu-Ali Sina University” and “Agricultural Biotechnology Research Institute” from Iran.

Supplementary material

11515_2018_1499_MOESM1_ESM.xls (1.5 mb)
Supplementary material, approximately 1492 KB.
11515_2018_1499_MOESM2_ESM.xls (1006 kb)
Supplementary material, approximately 1006 KB.
11515_2018_1499_MOESM3_ESM.xls (106 kb)
Supplementary material, approximately 106 KB.

References

  1. Albert R (2005). Scale-free networks in cell biology. J Cell Sci, 118(21): 4947–4957CrossRefPubMedGoogle Scholar
  2. Bader G D, Hogue C W (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4(1): 2CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bahrami A, Miraie-Ashtiani S R, Sadeghi M, Najafi A (2017). miRNAmRNA Network involved in folliculogenesis interactome: Systems biology approach. Reproduction, 154(1): 51–65CrossRefPubMedGoogle Scholar
  4. Barnard G F, Mori M, Staniunas R J, Begum N A, Bao S, Puder M, Cobb J, Redman K L, Steele G D Jr, Chen L B (1995). Ubiquitin fusion proteins are overexpressed in colon cancer but not in gastric cancer. Biochim Biophys Acta, 1272(3): 147–153CrossRefPubMedGoogle Scholar
  5. Bartlewski P M, Baby T E, Giffin J L (2011). Reproductive cycles in sheep. Anim Reprod Sci, 124(3–4): 259–268CrossRefPubMedGoogle Scholar
  6. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman W H, Pagès F, Trajanoski Z, Galon J (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 15(8): 1091–1093CrossRefGoogle Scholar
  7. Bonnet A, Cabau C, Bouchez O, Sarry J, Marsaud N, Foissac S, Woloszyn F, Mulsant P, Mandon-Pepin B (2013). An overview of gene expression dynamics during early ovarian folliculogenesis: specificity of follicular compartments and bi-directional dialog. BMC Genomics, 14(1): 904CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bonnet A, Lê Cao K A, Sancristobal M, Benne F, Robert-Granié C, Law-So G, Fabre S, Besse P, De Billy E, Quesnel H, Hatey F, Tosser-Klopp G (2008). In vivo gene expression in granulosa cells during pig terminal follicular development. Reproduction, 136(2): 211–224CrossRefPubMedGoogle Scholar
  9. Chen F W, Ioannou Y A (1999). Ribosomal proteins in cell proliferation and apoptosis. Int Rev Immunol, 18(5-6): 429–448CrossRefPubMedGoogle Scholar
  10. Cocucci E, Racchetti G, Meldolesi J (2009). Shedding microvesicles: artefacts no more. Trends Cell Biol, 19(2): 43–51CrossRefPubMedGoogle Scholar
  11. Cohen B D, Bariteau J T, Magenis L M, Dias J A (2003). Regulation of follitropin receptor cell surface residency by the ubiquitin-proteasome pathway. Endocrinology, 144(10): 4393–4402CrossRefPubMedGoogle Scholar
  12. Copois V, Bibeau F, Bascoul-Mollevi C, Salvetat N, Chalbos P, Bareil C, Candeil L, Fraslon C, Conseiller E, Granci V, Mazière P, Kramar A, Ychou M, Pau B, Martineau P, Molina F, Del Rio M (2007). Impact of RNA degradation on gene expression profiles: assessment of different methods to reliably determine RNA quality. J Biotechnol, 127(4): 549–559CrossRefPubMedGoogle Scholar
  13. Cuiling L, Wei Y, Zhaoyuan H, Yixun L (2005). Granulosa cell proliferation differentiation and its role in follicular development. Chin Sci Bull, 50(23): 2665–2671CrossRefGoogle Scholar
  14. Di R, He J, Song S, Tian D, Liu Q, Liang X, Ma Q, Sun M,Wang J, Zhao W, Cao G, Wang J, Yang Z, Ge Y, Chu M (2014). Characterization and comparative profiling of ovarian microRNAs during ovine anestrus and the breeding season. BMC Genomics, 15(1): 899CrossRefPubMedPubMedCentralGoogle Scholar
  15. Douville G, Sirard M A (2014). Changes in granulosa cells gene expression associated with growth, plateau and atretic phases in medium bovine follicles. J Ovarian Res, 7(1): 50CrossRefPubMedPubMedCentralGoogle Scholar
  16. Edgar J R (2016). Q&A: What are exosomes, exactly? BMC Biol, 14(1): 46CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fortune J E (1994). Ovarian follicular growth and development in mammals. Biol Reprod, 50(2): 225–232CrossRefPubMedGoogle Scholar
  18. Goodman R L, Inskeep E K (2015). Control of the ovarian cycle of the sheep. In: Plant T M, Zeleznik A J, editors. Knobil and Neill’s Physiology of Reproduction 4. San Diego, CA, USA: Elsevier Inc, pp. 1259–1305CrossRefGoogle Scholar
  19. György B, Szabó T G, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás E I (2011). Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci, 68(16): 2667–2688CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hafez E (1952). Studies on the breeding season and reproduction of the ewe Part I. The breeding season in different environments Part II. The breeding season in one locality. J Agric Sci, 42(03): 189–231Google Scholar
  21. Han X J, Lee M J, Yu G R, Lee Z W, Bae J Y, Bae Y C, Kang S H, Kim D G (2012). Altered dynamics of ubiquitin hybrid proteins during tumor cell apoptosis. Cell Death Dis, 3(1): e255CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hatzirodos N, Hummitzsch K, Irving-Rodgers H F, HarlandML, Morris S E, Rodgers R J (2014)a. Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia. BMC Genomics, 15(1): 40CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hatzirodos N, Irving-Rodgers H F, Hummitzsch K, HarlandML, Morris S E, Rodgers R J (2014)b. Transcriptome profiling of granulosa cells of bovine ovarian follicles during growth from small to large antral sizes. BMC Genomics, 15(1): 24CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hennet M L, Combelles C M (2012). The antral follicle: a microenvironment for oocyte differentiation. Int J Dev Biol, 56(10-11-12): 819–831CrossRefPubMedGoogle Scholar
  25. Holm S (1979). A simple sequentially rejective multiple test procedure. Scand J Stat, 6): 65–70Google Scholar
  26. Kobayashi M, Oshima S, Maeyashiki C, Nibe Y, Otsubo K, Matsuzawa Y, Nemoto Y, Nagaishi T, Okamoto R, Tsuchiya K, Nakamura T, Watanabe M (2016). The ubiquitin hybrid gene UBA52 regulates ubiquitination of ribosome and sustains embryonic development. Sci Rep, 6(1): 36780CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kotni M K, Zhao M, Wei D Q (2016). Gene expression profiles and protein-protein interaction networks in amyotrophic lateral sclerosis patients with C9orf72 mutation. Orphanet J Rare Dis, 11(1): 148CrossRefPubMedPubMedCentralGoogle Scholar
  28. Labrecque R, Fournier E, Sirard M A (2016). Transcriptome analysis of bovine oocytes from distinct follicle sizes: Insights from correlation network analysis. Mol Reprod Dev, 83(6): 558–569CrossRefPubMedGoogle Scholar
  29. Lai M D, Xu J (2007). Ribosomal proteins and colorectal cancer. Curr Genomics, 8(1): 43–49CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16): 2078–2079CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lin C Y, Lee T L, Chiu Y Y, Lin Y W, Lo Y S, Lin C T, Yang J M (2015). Module organization and variance in protein-protein interaction networks. Sci Rep, 5(1): 9386CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lotia S, Montojo J, Dong Y, Bader G D, Pico A R (2013). Cytoscape app store. Bioinformatics, 29(10): 1350–1351CrossRefPubMedPubMedCentralGoogle Scholar
  33. Malik A, Lee E J, Jan A T, Ahmad S, Cho K H, Kim J, Choi I (2015). Network Analysis for the Identification of Differentially Expressed Hub Genes Using Myogenin Knock-down Muscle Satellite Cells. PLoS One, 10(7): e0133597CrossRefPubMedPubMedCentralGoogle Scholar
  34. Matragkou C N, Papachristou E T, Tezias S S, Tsiftsoglou A S, Choli-Papadopoulou T, Vizirianakis I S (2008). The potential role of ribosomal protein S5 on cell cycle arrest and initiation of murine erythroleukemia cell differentiation. J Cell Biochem, 104(4): 1477–1490CrossRefPubMedGoogle Scholar
  35. Mbayahaga J, Mandiki S N, Bister J L, Paquay R (1998). Body weight, oestrous and ovarian activity in local Burundian ewes and goats after parturition in the dry season. Anim Reprod Sci, 51(4): 289–300CrossRefPubMedGoogle Scholar
  36. Naora H, Nishida T, Shindo Y, Adachi M, Naora H (1995). Association of nbl gene expression and glucocorticoid-induced apoptosis in mouse thymus in vivo. Immunology, 85): 63–68PubMedPubMedCentralGoogle Scholar
  37. Noel B, Bister J L, Paquay R (1993). Ovarian follicular dynamics in Suffolk ewes at different periods of the year. J Reprod Fertil, 99(2): 695–700CrossRefPubMedGoogle Scholar
  38. Peluso J J, Steger R W (1978). Role of FSH in regulating granulosa cell division and follicular atresia in rats. J Reprod Fertil, 54(2): 275–278CrossRefPubMedGoogle Scholar
  39. Qi Y, Li X, Chang C, Xu F, He Q, Zhao Y, Wu L (2017). Ribosomal protein L23 negatively regulates cellular apoptosis via the RPL23/Miz-1/c-Myc circuit in higherrisk myelodysplastic syndrome. Sci Rep, 7(1): 2323CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ramsköld D, Wang E T, Burge C B, Sandberg R (2009). An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLOS Comput Biol, 5(12): e1000598CrossRefPubMedPubMedCentralGoogle Scholar
  41. Raposo G, Nijman H W, Stoorvogel W, Liejendekker R, Harding C V, Melief C J, Geuze H J (1996). B lymphocytes secrete antigen-presenting vesicles. J Exp Med, 183(3): 1161–1172CrossRefPubMedGoogle Scholar
  42. Rodgers R J, Rodgers H F, Hall P F, Waterman M R, Simpson E R (1986). Immunolocalization of cholesterol side-chain-cleavage cytochrome P-450 and 17 alpha-hydroxylase cytochrome P-450 in bovine ovarian follicles. J Reprod Fertil, 78(2): 627–638CrossRefPubMedGoogle Scholar
  43. Romereim S M, Summers A F, Pohlmeier W E, Zhang P, Hou X, Talbott H A, Cushman R A, Wood J R, Davis J S, Cupp A S (2017). Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions. Mol Cell Endocrinol, 439): 379–394CrossRefPubMedGoogle Scholar
  44. Shimizu T (2016). Molecular and cellular mechanisms for the regulation of ovarian follicular function in cows. J Reprod Dev, 62(4): 323–329CrossRefPubMedPubMedCentralGoogle Scholar
  45. Skinner M K, Schmidt M, Savenkova M I, Sadler-Riggleman I, Nilsson E E (2008). Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development. Mol Reprod Dev, 75(9): 1457–1472CrossRefPubMedPubMedCentralGoogle Scholar
  46. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou K P, Kuhn M, Bork P, Jensen L J, von Mering C (2015). STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res, 43(Database issue): D447–D452CrossRefPubMedGoogle Scholar
  47. Talebi R, Ahmadi A, Afraz F, Abdoli R (2016). Parkinson’s disease and lactoferrin: Analysis of dependent protein networks. Gene Rep, 4): 177–183CrossRefGoogle Scholar
  48. Talebi R, Ahmadi A, Afraz F (2018)a. Analysis of protein-protein interaction network based on transcriptome profiling of ovine granulosa cells identifies candidate genes in cyclic recruitment of ovarian follicles. J Anim Sci Technol, 60: 11CrossRefPubMedPubMedCentralGoogle Scholar
  49. Talebi R, Ahmadi A, Afraz F, Sarry J, Plisson-Petit F, Genêt C, Fabre S (2018)b. Transcriptome analysis of ovine granulosa cells reveals differences between small antral follicles collected during the follicular and luteal phases. Theriogenology, 108): 103–117CrossRefPubMedGoogle Scholar
  50. Terenina E, Fabre S, Bonnet A, Monniaux D, Robert-Granié C, SanCristobal M, Sarry J, Vignoles F, Gondret F, Monget P, Tosser-Klopp G (2017). Differentially expressed genes and gene networks involved in pig ovarian follicular atresia. Physiol Genomics, 49(2): 67–80CrossRefPubMedGoogle Scholar
  51. Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van BarenM J, Salzberg S L,Wold B J, Pachter L (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 28(5): 511–515CrossRefPubMedPubMedCentralGoogle Scholar
  52. Vizirianakis I S, Papachristou E T, Andreadis P, Zopounidou E, Matragkou C N, Tsiftsoglou A S (2015). Genetic manipulation of RPS5 gene expression modulates the initiation of commitment of MEL cells to erythroid maturation: Implications in understanding ribosomopathies. Int J Oncol, 47(1): 303–314CrossRefPubMedGoogle Scholar
  53. Xu F, Stouffer R L, Müller J, Hennebold J D, Wright J W, Bahar A, Leder G, Peters M, Thorne M, Sims M, Wintermantel T, Lindenthal B (2011). Dynamics of the transcriptome in the primate ovulatory follicle. Mol Hum Reprod, 17(3): 152–165CrossRefPubMedGoogle Scholar
  54. Xu X, Zhao X, Lu L, Duan X, Qin H, Du X, Li G, Tao Z, Zhong S,Wang G (2016)a. Transcriptomic analysis of different stages of pigeon ovaries by RNA-Sequencing. Mol Reprod Dev, 83(7): 640–648CrossRefPubMedGoogle Scholar
  55. Xu Z, Zhou Y, Cao Y, Dinh T L, Wan J, Zhao M (2016)b. Identification of candidate biomarkers and analysis of prognostic values in ovarian cancer by integrated bioinformatics analysis. Med Oncol, 33(11): 130CrossRefPubMedGoogle Scholar
  56. Zhang J, Pan Z, Moloney S, Sheppard A (2014). RNA-Seq Analysis Implicates Detoxification Pathways in Ovine Mycotoxin Resistance. PLoS ONE9, 6: e99975CrossRefGoogle Scholar
  57. Zhang X, Huang L, Wu T, Feng Y, Ding Y, Ye P, Yin Z (2015). Transcriptomic analysis of ovaries from pigs with high and low litter size. PLoS One, 10(10): e0139514CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhen X, Wu B, Wang J, Lu C, Gao H, Qiao J (2015). Increased Incidence of Mitochondrial Cytochrome C Oxidase 1 Gene Mutations in Patients with Primary Ovarian Insufficiency. PLoS One, 10(7): e0132610CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhou X, Hao Q, Zhang Q, Liao J M, Ke J W, Liao P, Cao B, Lu H (2015). Ribosomal proteins L11 and L5 activate TAp73 by overcoming MDM2 inhibition. Cell Death Differ, 22(5): 755–766CrossRefPubMedGoogle Scholar
  60. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998). Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med, 4(5): 594–600CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Animal Sciences, Faculty of AgricultureBu-Ali Sina UniversityHamedanIran
  2. 2.Department of Livestock and Aquaculture BiotechnologyAgricultural Biotechnology Research Institute of North RegionRashtIran

Personalised recommendations