Skip to main content
Log in

Clastogenic ROS and biophotonics in precancerous diagnosis

  • Review
  • Published:
Frontiers in Biology

Abstract

Background

Cancer is the leading cause of death worldwide. The application of biophotonics for diagnosing precancerous lesions is a major breakthrough in oncology and is associated with the expression of clastogenic bio-markers, such as reactive oxygen species (ROS), namely, superoxide anion radicals, hydrogen peroxide, hydroxyl radicals, and lipid peroxidation products. These ROS are the major sources of ultra-weak biophotons emission; in addition, biophotons are emitted from other biomolecules, which are not associated with ROS. The precancerous phase is diagnosed on the basis of biophoton emission from biomarkers. The type of biophotons emitted depends on the structure of the clastogenic ROS.

Methods

ROS-based emission of ultra-weak photons can be detected using charge coupled device (CCD) cameras and photomultiplier tubes. Furthermore, spectroscopic and microscopic analysis can yield more advanced and definite results.

Results

The frequency and intensity of biophoton emission associated with each ROS provides information regarding the precancerous phase. Previous have attempted to show an association between precancerous growth and biophoton emission; however, their results were not conclusive. In this review, we have addressed multiple aspects of the molecular environment, especially light- matter interactions, to derive a successful theoretical relationship which may have the ability to diaganose the tumor at precancerous stage and to give the solutions of previous failures. This can be a major quantum leap toward precancerous diagnosis therapy.

Conclusion

Biophotonics provides an advanced framework, for easily diagnosing cancer at its preliminary stage. The relationship between biophotons, clastogenic factors, and biochemical reactions in the cellular microenvironment can be understood successfully. The advancement in precancerous diagnosis will improve human health worldwide. The versatility of biophotonics can be used further for novel applications in biology, biochemistry, chemistry and social fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alarcon E, Henriquez C, Aspee A, Lissi E A (2007). Chemiluminescence associated with singlet oxygen reactions with amino acids, peptides and proteins. Photochem Photobiol, 83(3): 475–480

    Article  PubMed  CAS  Google Scholar 

  • Alipour A (2015). Demystifying the Biophoton-Induced Cellular Growth: A Simple Mode. JAMSAT

    Google Scholar 

  • Anwijk R V (2001). Bio-photons and Bio-communication. J Sci Explor, 15: 183–197

    Google Scholar 

  • Ballardin M, Barsacchi R, Bodei L, Caraccio N, Cristofani R, DiMrtino F, Ferdeghini M, Kusmic C, Madeddu G, Monzani F, Rossi A M, Sbrana I, Spanu A, Traino C (2004). Oxidative and genotoxic damage after radio-iodine therapy of Graves’ hyperthyroidism. Int J Radiat Biol, 80(3): 209–216

    Article  PubMed  CAS  Google Scholar 

  • Beckman K B, Saljoughi S, Mashiyama S T, Ames B N (2000). A simpler, more robust method for the analysis of 8-oxoguanine in DNA. Free Radic Biol Med, 29(3-4): 357–367

    Article  PubMed  CAS  Google Scholar 

  • Benhar M, Engelberg D, Levitzki A (2002). ROS, stress activated kinases and stress signaling in cancer. EMBO Rep, 3(5): 420–425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birtic S, Ksas B, Genty B, Mueller M J, Triantaphylides C, Havaux M (2011). Using spontaneous photon emission to image lipid peroxidation pattern in plant tissues. Plant J, 67(6): 1103–1115

    Article  PubMed  CAS  Google Scholar 

  • Bischof M (2005). Biophotons–The Light in our cells. J Opt Phototh, 1–5

    Google Scholar 

  • Blake T D, Buckner C A, Cameron D, Lafrenie R M, Persinger M A (2011). Biophoton emissions from cell cultures: biochemical evidence for the plasma membrane as the primary source. Gen Physiol Biophys, 30: 301–309

    Google Scholar 

  • Bozzone D M (2007). Cancer genetics; Moon Children. Chelsea house, 132 west 31st street, New York

    Google Scholar 

  • Brizhik L. (2008). Nonlinear mechanism for weak photon emission from biosystems. Indian journal of experimental biology, 46, 353–357

    PubMed  Google Scholar 

  • Burhans W, Heintz N (2009). The Cell Cycle is a Redox Cycle: Linking phase-specific targets to cell fate. Free Radic Biol Med, 47(9): 1282–1294

    Article  PubMed  CAS  Google Scholar 

  • Cao Y (2010). Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov, 9(2): 107–115

    Article  PubMed  CAS  Google Scholar 

  • Chalmers J M, Griffiths P R (2002). Handbook of Vibrational Spectroscopy. Wiley Milan, Italy

    Google Scholar 

  • Chen P, Zhang L, Zhang F, Liu J T, Bai H, Tang G Q, Lin L (2012). Spectral discrimination between normal and leukemic human sera using delayed luminescence. Biomed Opt Express, 3(8): 1787–1792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng N, Chytil A, Shyr Y, Joly A, Moses H L (2008). Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Molecular cancer research. MCR, 6: 1521–1533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiarugi P (2003) Reactive oxygen species as mediators of cell adhesion. Ital J Biochem, 52: 28–32

    PubMed  CAS  Google Scholar 

  • Ciccia A, Elledge S J (2010). The DNA damage response: making it safe to play with knives. Mol Cell, 40(2): 179–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cifra M, Pokornč J, Havelka D, Kučera O (2010). Electric field generated by axial longitudinal vibration modes of microtubule. Biosystems, 100(2): 122–131

    Article  PubMed  CAS  Google Scholar 

  • Cifra M, Pospisil P (2014). Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J Photochem Photobiol B, 139: 2–10

    Article  PubMed  CAS  Google Scholar 

  • Coghlin C, Murray G I (2010). Current and emerging concepts in tumour metastasis. J Pathol, 222(1): 1–15

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Popp F A (2003). Biophoton emission of human body. Indian J Exp Biol, 41: 440–445

    PubMed  CAS  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 17(10): 1195–1214

    Article  PubMed  CAS  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 17(10): 1195–1214

    Article  PubMed  CAS  Google Scholar 

  • Creath K, Schwartz G E (2004). Biophoton images of plants: revealing the light within. J Altern Complement Med, 10(1): 23–26

    Article  PubMed  Google Scholar 

  • Feig D I, Reid T M, Loeb L A (1994). Reactive oxygen species in tumorigenesis. Cancer Res, 54 (7 Suppl): 1890s

    Google Scholar 

  • Davies K J A (2001). Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life, 50(4): 279–289

    Article  Google Scholar 

  • Day B J, Batinic-Haberle I, Crapo J D (1999). Metalloporphyrins are potent inhibitors of lipid peroxidation. Free Radic Biol Med, 26(5-6): 730–736

    Article  PubMed  CAS  Google Scholar 

  • Day B J, Fridovich I, Crapo J D (1997). Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch Biochem Biophys, 347(2): 256–262

    Article  PubMed  CAS  Google Scholar 

  • Degan P, Bonassi S, De Caterina M, Korkina L G, Pinto L, Scopacasa F, Zatterale A, Calzone R, Pagano G (1995). In vivo accumulation of 8-hydroxy-2′-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi’s anaemia families. Carcinogenesis, 16(4): 735–741

    Article  PubMed  CAS  Google Scholar 

  • Deriu M A, Soncini M, Orsi M, Patel M, Essex J W, Montevecchi F M, Redaelli A (2010). Anisotropic Elastic Network Modeling of Entire Microtubules. Biophys J, 99(7): 2190–2199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deshpande N N, Sorescu D, Seshiah P, Ushio-Fukai M, Akers M, Yin Q, Griendling K K (2002). Mechanism of hydrogen peroxide-induced cell cycle arrest in vascular smooth muscle. Antioxid Redox Signal, 4 (5): 845–854

    Article  PubMed  CAS  Google Scholar 

  • Dinh T V (2010). Biomedical Photonics Handbook. CRC Press

    Google Scholar 

  • Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002). Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med, 32(11): 1102–1115

    Article  PubMed  CAS  Google Scholar 

  • Dotta B T, Buckner C A, Cameron D, Lafrenie R F, Persinger M A (2011). Biophoton emissions from cell cultures: biochemical evidence for the plasma membrane as the primary source. Gen Physiol Biophys, 30: 301–309

    PubMed  CAS  Google Scholar 

  • Emerit I (1994). Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. F ree Radic Biol Med, 16(1): 99–109

    Article  CAS  Google Scholar 

  • Emerit I (2007). Clastogenic factors as potential biomarkers of increased superoxide production. B iomark Insights, 2: 429–438

    Google Scholar 

  • Ferrari M, Quaresima V (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 63(2): 921–935

    Article  PubMed  Google Scholar 

  • Ferraro P, Wax A, Zalevsky Z (2011). Coherent Light Microscopy: Imaging and Quantitative Phase Analysis. Springer

    Google Scholar 

  • Floryszak-Wieczorek J, Go’rski Z, Arasimowicz-Jelonek M (2011). Functional imaging of biophoton responses of plants to fungal infection. Eur J Plant Pathol, 130(2): 249–258

    Article  Google Scholar 

  • Gartel A L, Radhakrishnan S K (2005). Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res, 65(10): 3980–3985

    Article  PubMed  CAS  Google Scholar 

  • Griendling K K, FitzGerald G A (2003). Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation, 108(16): 1912–1916

    Article  PubMed  Google Scholar 

  • Guo Y, Tan J (2013). A biophotonic sensing method for plant drought stress. Sens Actuators B Chem, 188: 519–524

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge J M C (1985). Free radicals in biology and medicine. J Free Rad Biol Med, 1 (4):331–332

    Article  Google Scholar 

  • Hanahan D, Weinberg R A (2011). Hallmarks of cancer: the next generation. Cell, 144 (5): 646

    Article  PubMed  CAS  Google Scholar 

  • Held P (2015). An Introduction to Reactive Oxygen Species; Measurement of ROS in Cells White papers

    Google Scholar 

  • Hideg E (1993). On the spontaneous ultraweak light emission of plants. J Photochem Photobiol B, 18(2-3): 239–244

    Article  Google Scholar 

  • Hossu M, Ma L, Zou X, Chen W (2013). Enhancement of biophoton emission of prostate cancer cells by Ag nanoparticles. Cancer Nanotechnol, 4(1-3): 21–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue M, Sato E F, Nishikawa M, Park A M, Kira Y, Imada I, Utsumi K (2003). Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem, 10(23): 2495–2505

    Article  PubMed  CAS  Google Scholar 

  • Kai S (2012). Biophoton: collection of photon-images. Forma, 27: S45–S48

    Google Scholar 

  • Kamal A H, Komatsu S (2015). Involvement of reactive oxygen species and mitochondrial proteins in biophoton emission in roots of soybean plants under flooding stress. J Proteome Res, 14(5): 2219–2236

    Article  PubMed  CAS  Google Scholar 

  • Kamal A H, Komatsu S (2016). Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions. Mol Biol Rep, 43(2): 73–89

    Article  PubMed  CAS  Google Scholar 

  • Kanofsky J R (2011). Measurement of singlet-oxygen in vivo: progress and pitfalls. Photochem Photobiol, 87(1): 14–17

    Article  PubMed  CAS  Google Scholar 

  • Kasprzak K S (2002). Oxidative DNA and protein damage in metalinduced toxicity and carcinogenesis. Free Radic Biol Med, 32(10): 958–967

    Article  PubMed  CAS  Google Scholar 

  • Kataoka Y, Cui Y, Yamagata A, Niigaki M, Hirohata T, Oishi N, Watanabe Y (2001). Activity-dependent neural tissue oxidation emits intrinsic ultraweak photons. Biochem Biophys Res Commun, 285(4): 1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Klaunig J E, Xu Y, Bachowski S, Jiang J (1997). Free-radical oxygeninduced changes in chemical carcinogenesis. Free Radical Toxicology, 375–400

    Google Scholar 

  • Klotter J (2010). Light, Cancer and Fritz-Albert Popp

    Google Scholar 

  • Kobayashi K. (2003). Spontaneous ultraweak photon emission of living organisms—biophotons—phenomena and detection techniques for extracting biological information. Trends in Photohchem. Photobiol, 10: 111–135

    CAS  Google Scholar 

  • Kobayashi M, Kikuchi D, Okamura H (2009). Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm. PLoS One, 4(7): e6256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Komatsu S, Kamal A H, Makino T, Hossain Z (2014). Ultraweak photon emission and proteomics analyses in soybean under abiotic stress. Biochim Biophys Acta, 1844(7): 1208–1218

    Article  PubMed  CAS  Google Scholar 

  • Kops G J, Dansen T B, Polderman P E, Saarloos I, Wirtz K W, Coffer P J, Huang T T, Bos J L, Medema R H, Burgering B M (2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 419(6904): 316–321

    Article  PubMed  CAS  Google Scholar 

  • Larason T C, Bruce S S, Parr A C (1998). NIST Measurement Services: Spectroradiometric Detector Measurements: Part I-Ultraviolet Detectors and Part II-Visible to Near-Infrared Detectors. National Institute of Standards and Technology (USA) Special Publication

    Google Scholar 

  • Lau A T, Wang Y, Chiu J F (2008). Reactive oxygen species: current knowledge and applications in cancer research and therapeutic. J Cell Biochem, 104(2): 657–667

    Article  PubMed  CAS  Google Scholar 

  • Liebel F, Kaur S, Ruvolo E, Kollias N, Southall M D (2012). Irradiation of skin with visible light induces reactive oxygen species and matrixdegrading enzymes. J Invest Dermatol, 132(7): 1901–1907

    Article  PubMed  CAS  Google Scholar 

  • Lindholm C, Acheva A, Salomaa S (2010). Clastogenic plasma factors: a short overview. Radiat Environ Biophys, 49(2): 133–138

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Yeo H C, Overvik-Douki E, Hagen T, Doniger S J, Chu D W, Brooks G A, Ames B N (2002). Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol B, 89(1): 21–28

    Article  Google Scholar 

  • Liu Y W, Sakaeda T, Takara K, Nakamura T, Ohmoto N, Komoto C, Kobayashi H, Yagami T, Okamura N, Okumura K (2003). Effects of Reactive oxygen species on cell proliferation and death in HeLa Cells and its MDR1-overexpressing derivative cell line. Biol Pharm Bull, 26(2): 278–281

    Article  PubMed  CAS  Google Scholar 

  • Lorch S, Lightfoot R, Ohshima H, Virag L, Chen Q, Hertkorn C, Weiss M, Souza J, Ischiropoulos H, Yermilov V, Pignatelli B, Masuda M, Szabo C (2002). Detection of peroxynitrite-induced protein and DNA modifications. Methods Mol Biol, 196: 247–275

    PubMed  CAS  Google Scholar 

  • Lozneanu E, Sanduloviciu M (2008). Physical Basis Of Biophoton Emission And Intercellular Communication. Rom Rep Phys, 60(3): 885–898

    CAS  Google Scholar 

  • Maitland K, Wang T D (2013). “Endoscopy,”in Biomedical Technology and Devices Handbook. Taylor and Francis, New York

    Google Scholar 

  • Marnett L J (2000a). Oxyradicals and DNA damage. Carcinegensis, 21 (3): 361–370

    Article  CAS  Google Scholar 

  • Mason W T (1999). Fluorescent and Luminescent Probes for Biological Activity, Massachusetts.

    Google Scholar 

  • Montillet J L, Chamnongpol S, Rusterucci C, Dat J, van de Cotte B, Agnel J P, Battesti C, Inze D, Van Breusegem F, Triantaphylides C (2005). Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol, 138(3): 1516–1526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morgan W F (2003). Non-targeted and delayed eVects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res, 159(5): 567–580

    PubMed  CAS  Google Scholar 

  • Muhammad N, Mohammad R, Kashif M, Liaqat I (2017). The Darkness Brings Light in the Field of Bio-Communication Through Melatonin Production. Advances in Applied Science Research, 8: 50–61

    Google Scholar 

  • Nelson K K, Melendez J A (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med, 37(6): 768–784

    Article  PubMed  CAS  Google Scholar 

  • Norppa H, Bonassi S, Hansteen I L, Hagmar L, Stromberg U, Rossner P, Boffetta P, Lindholm C, Gundy S, Lazutka J, Cebulska-Wasilewska A, Fabianova E, Sram R J, Knudsen L E, Barale R, Fucic A (2006). Chromosomal aberrations and SCEs as biomarkers of cancer risk. Mutat Res, 600(1-2): 37–45

    Article  PubMed  CAS  Google Scholar 

  • Ogilby P R (2010). Singlet oxygen: there is indeed something new under the sun. Chem Soc Rev, 39(8): 3181–3209

    Article  PubMed  CAS  Google Scholar 

  • Owrutsky J C, Li M, Locke B, Hochstrasser R M (1995). Vibrational relaxation of the CO stretch vibration in hemoglobin-CO, myoglobin- CO, and pro-toheme-CO. J Phys Chem, 99(13): 4842–4846

    Article  CAS  Google Scholar 

  • Atkius P, Paula JD. (2002). Physical Chemistry. W.H. Freeman, New York Chiarugi P (2008) Src redox regulation: there is more than meets the eye. Mol Cell, 26: 329–337

    Google Scholar 

  • Pang X F (2012). The mechanism and properties of bio-photon emission and absorption in protein molecules in living systems. J Appl Phys, 111 (9):117–134

    Article  CAS  Google Scholar 

  • Pang X F (1995). A molecular dynamic theory of ultraweak bio-photon emission in the living systems and its properties. Chin J At Mol Phys, 12: 411–420

    CAS  Google Scholar 

  • Popp F A (2009). Cancer growth and its inhibition in terms of coherence. Electromagn Biol Med, 28(1): 53–60

    Article  PubMed  Google Scholar 

  • Pospisil P, Prasad A, Rac M (2014). Role of reactive oxygen species in ultra-weak photon emission in biological systems. J Photochem Photobiol B, 139: 11–23

    Article  PubMed  CAS  Google Scholar 

  • Practico D, Lawson J A, Rokach J, Fitzgerald G A (2002). The isoprostanes in biology and medicine. Trends Endocrinol Metab, 12: 243–247

    Article  Google Scholar 

  • Prasad A, Pospisil P (2011). Two-dimensional imaging of spontaneous ultra-weak photon emission from the human skin: role of reactive oxygen species. J Biophotonics, 4(11-12): 840–849

    Article  PubMed  CAS  Google Scholar 

  • Prasad A, Pospisil P (2012). Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging. J Biomed Opt, 17(8): 085004

    Article  PubMed  CAS  Google Scholar 

  • Rahnama M, Tuszynski J A, Bókkon I, Cifra M, Sardar P, Salari V, Majid R (2011). Emission of mitochondrial biophotons and their effect on electrical activity of membrane via microtubules. J Integr Neurosci, 10(01): 65–88

    Article  PubMed  Google Scholar 

  • Rastogi A, Pospisil P (2010). Ultra-weak photon emission as a noninvasive tool for monitoring of oxidative processes in the epidermal cells of human skin: comparative study on the dorsal and the palm side of the hand. Skin Res Tech, 16: 365–370

    Google Scholar 

  • Rastogi A, Pospisil P (2011). Spontaneous ultraweak photon emission imaging of oxidative metabolic processes in human skin: effect of molecular oxygen and antioxidant defense system. J Biomed Opt, 16 (9): 096005

    Article  PubMed  CAS  Google Scholar 

  • Rastogi A, Pospisil P (2013). Ultra-weak photon emission as a noninvasive tool for the measurement of oxidative stress induced by UVA radiation in Arabidopsis thaliana. J Photochem Photobiol B, 123: 59–64

    Article  PubMed  CAS  Google Scholar 

  • Saar B G, Freudiger CW, Reichman J, Stanley C M, Holtom G R, Xie X S (2010). Video-rate molecular imaging in vivo with stimulated Raman scattering. Science, 330(6009): 1368–1370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saleh B, Teich M C, Slusher R E (1992). Fundamentals of Photonics. Physics Today, 45 (11): 87–88

    Article  Google Scholar 

  • Sauermann G, Mei W P, Hoppe U, Stab F (1999). Ultraweak photon emission of human skin in vivo: influence of topically applied antioxidants on human skin. Methods Enzymol, 300: 419–428

    Article  PubMed  CAS  Google Scholar 

  • Savage L M (2006). On the path toward more useful fluorophores. Biophoton Int, 2: 34–37

    Google Scholar 

  • Shen X, Bei L, Hu T H, Aryal B (2000). The possible role played by biophotons in the long-range interaction between neutrophil leukocytes

    Google Scholar 

  • Shukla A, Gulumian M, Hei T K, Kamp D, Rahman QMB, Mossman B T (2003). Multiple roles of oxidants in the pathogenesis of asbestosinduced diseases. Free Radic Biol Med, 34(9): 1117–1129

    CAS  Google Scholar 

  • Solli D R, Chou J, Jalali B (2008). Amplified wavelength–time transformation for real-time spectroscopy. Nat Photonics, 2(1): 48–51

    Article  CAS  Google Scholar 

  • Storz P(2005) Reactive oxygen species in tumor progression. Front Biosc, 10, 1881–1896

  • Suhalim J L, Boik J C, Tromberg B J, Potma E O (2012). The need for speed. J Biophotonics, 5(5-6): 387–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Tafur J, Van Wijk E P, Van Wijk R, Mills P J (2010). Biophoton detection and low-intensity light therapy: a potential clinical partnership. Photomed Laser Surg, 28(1): 23–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Takedaa M, Tanno Y, Kobayashi M, Usa M, Ohuchib N, Satomi S (1998). A novel method of assessing carcinoma cell proliferation by biophoton emission. Cancer Lett, 127(1-2): 155–160

    Article  Google Scholar 

  • Tennenbaum, J (1998–1999). Beyond Molecular Biology The Biophoton Revolution

    Google Scholar 

  • Tsia K K (2015) Fundamentals, Advances and Applications. CRC Press, Taylor & Francis Group. Understanding of Biophotonics.

    Chapter  Google Scholar 

  • Tulah A S, Birch-Machin M A (2013). Stressed out mitochondria: the role of mitochondria in ageing and cancer focussing on strategies and opportunities in human skin. Mitochondrion, 13(5): 444–453

    Article  PubMed  CAS  Google Scholar 

  • Vafa O, Wade M, Kern S, Beeche M, Pandita T K, Hampton G M, Wahl G M (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell, 9(5): 1031–1044

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Izakovic M, Mazur M, Rhodes C J, Telser J (2004). Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem, 266(1/2): 37–56

    Article  PubMed  CAS  Google Scholar 

  • Valkoa M, Rhodes C J, Moncol J, Izakovic M, Mazur M (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact, 160(1): 1–40

    Article  CAS  Google Scholar 

  • Van Wijk R, Kobayashi M, Van Wijk E P (2006a). Anatomic characterization of human ultra-weak photon emission with a moveable photomultiplier and CCD imaging. J Photochem Photobiol B, 83(1): 69–76

    Article  PubMed  CAS  Google Scholar 

  • Van Wijk R, Van Wijk E P, Bajpai R P (2006b). Photocount distribution of photons emitted from three sites of a human body. J Photochem Photobiol B, 84(1): 46–55

    Article  PubMed  CAS  Google Scholar 

  • VanWijk R, VanWijk E P, Wiegant F A, Ives J (2008). Free radicals and low-level photon emission in human pathogenesis: state of the art. Indian J Exp Biol, 46: 273–309

    CAS  Google Scholar 

  • Vladimirov Y A, Proskurnina V (2009). Free radicals and cell chemiluminescence. Biochemistry (Mosc), 74(13): 1545–1566

    Article  CAS  Google Scholar 

  • Wang L V, Wu H (2007). Biomedical Optics: Principles and Imaging. Wiley-Interscience

    Google Scholar 

  • Watts B P, Barnard M, Turrens J F (1995). Peroxynitrite-dependent chemiluminescence of amino acids, proteins, and intact cells. Arch Biochem Biophys, 317(2): 324–330

    Article  PubMed  CAS  Google Scholar 

  • Winkler R, Guttenberger H, Klima H (2009). Ultraweak and induced photon emission after wounding of plants. Photochem Photobiol, 85 (4): 962–965

    Article  PubMed  CAS  Google Scholar 

  • Wiseman H, Halliwell B (1996b). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J, 313(Pt 1): 17–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiseman H, Halliwell B, and the WISEMAN (1996a). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J, 313(1): 17–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wright J R, Rumbaugh R C, Colby H D, Miles P R (1979). The relationship between chemiluminescence and lipid peroxidation in rat hepatic microsomes. Arch Biochem Biophys, 192(2): 344–351

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naveed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveed, M., Raees, M., Liaqat, I. et al. Clastogenic ROS and biophotonics in precancerous diagnosis. Front. Biol. 13, 103–122 (2018). https://doi.org/10.1007/s11515-018-1488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-018-1488-0

Keywords

Navigation