Advertisement

Frontiers in Biology

, Volume 13, Issue 2, pp 103–122 | Cite as

Clastogenic ROS and biophotonics in precancerous diagnosis

  • Muhammad NaveedEmail author
  • Mohammad Raees
  • Irfan Liaqat
  • Mohammad Kashif
Review
  • 32 Downloads

Abstract

Background

Cancer is the leading cause of death worldwide. The application of biophotonics for diagnosing precancerous lesions is a major breakthrough in oncology and is associated with the expression of clastogenic bio-markers, such as reactive oxygen species (ROS), namely, superoxide anion radicals, hydrogen peroxide, hydroxyl radicals, and lipid peroxidation products. These ROS are the major sources of ultra-weak biophotons emission; in addition, biophotons are emitted from other biomolecules, which are not associated with ROS. The precancerous phase is diagnosed on the basis of biophoton emission from biomarkers. The type of biophotons emitted depends on the structure of the clastogenic ROS.

Methods

ROS-based emission of ultra-weak photons can be detected using charge coupled device (CCD) cameras and photomultiplier tubes. Furthermore, spectroscopic and microscopic analysis can yield more advanced and definite results.

Results

The frequency and intensity of biophoton emission associated with each ROS provides information regarding the precancerous phase. Previous have attempted to show an association between precancerous growth and biophoton emission; however, their results were not conclusive. In this review, we have addressed multiple aspects of the molecular environment, especially light- matter interactions, to derive a successful theoretical relationship which may have the ability to diaganose the tumor at precancerous stage and to give the solutions of previous failures. This can be a major quantum leap toward precancerous diagnosis therapy.

Conclusion

Biophotonics provides an advanced framework, for easily diagnosing cancer at its preliminary stage. The relationship between biophotons, clastogenic factors, and biochemical reactions in the cellular microenvironment can be understood successfully. The advancement in precancerous diagnosis will improve human health worldwide. The versatility of biophotonics can be used further for novel applications in biology, biochemistry, chemistry and social fields.

Keywords

biophotons CCD camera molecular environment oncology precancerous photomultiplier ROS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alarcon E, Henriquez C, Aspee A, Lissi E A (2007). Chemiluminescence associated with singlet oxygen reactions with amino acids, peptides and proteins. Photochem Photobiol, 83(3): 475–480PubMedCrossRefGoogle Scholar
  2. Alipour A (2015). Demystifying the Biophoton-Induced Cellular Growth: A Simple Mode. JAMSATGoogle Scholar
  3. Anwijk R V (2001). Bio-photons and Bio-communication. J Sci Explor, 15: 183–197Google Scholar
  4. Ballardin M, Barsacchi R, Bodei L, Caraccio N, Cristofani R, DiMrtino F, Ferdeghini M, Kusmic C, Madeddu G, Monzani F, Rossi A M, Sbrana I, Spanu A, Traino C (2004). Oxidative and genotoxic damage after radio-iodine therapy of Graves’ hyperthyroidism. Int J Radiat Biol, 80(3): 209–216PubMedCrossRefGoogle Scholar
  5. Beckman K B, Saljoughi S, Mashiyama S T, Ames B N (2000). A simpler, more robust method for the analysis of 8-oxoguanine in DNA. Free Radic Biol Med, 29(3-4): 357–367PubMedCrossRefGoogle Scholar
  6. Benhar M, Engelberg D, Levitzki A (2002). ROS, stress activated kinases and stress signaling in cancer. EMBO Rep, 3(5): 420–425PubMedPubMedCentralCrossRefGoogle Scholar
  7. Birtic S, Ksas B, Genty B, Mueller M J, Triantaphylides C, Havaux M (2011). Using spontaneous photon emission to image lipid peroxidation pattern in plant tissues. Plant J, 67(6): 1103–1115PubMedCrossRefGoogle Scholar
  8. Bischof M (2005). Biophotons–The Light in our cells. J Opt Phototh, 1–5Google Scholar
  9. Blake T D, Buckner C A, Cameron D, Lafrenie R M, Persinger M A (2011). Biophoton emissions from cell cultures: biochemical evidence for the plasma membrane as the primary source. Gen Physiol Biophys, 30: 301–309Google Scholar
  10. Bozzone D M (2007). Cancer genetics; Moon Children. Chelsea house, 132 west 31st street, New YorkGoogle Scholar
  11. Brizhik L. (2008). Nonlinear mechanism for weak photon emission from biosystems. Indian journal of experimental biology, 46, 353–357PubMedGoogle Scholar
  12. Burhans W, Heintz N (2009). The Cell Cycle is a Redox Cycle: Linking phase-specific targets to cell fate. Free Radic Biol Med, 47(9): 1282–1294PubMedCrossRefGoogle Scholar
  13. Cao Y (2010). Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov, 9(2): 107–115PubMedCrossRefGoogle Scholar
  14. Chalmers J M, Griffiths P R (2002). Handbook of Vibrational Spectroscopy. Wiley Milan, ItalyGoogle Scholar
  15. Chen P, Zhang L, Zhang F, Liu J T, Bai H, Tang G Q, Lin L (2012). Spectral discrimination between normal and leukemic human sera using delayed luminescence. Biomed Opt Express, 3(8): 1787–1792PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cheng N, Chytil A, Shyr Y, Joly A, Moses H L (2008). Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Molecular cancer research. MCR, 6: 1521–1533PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chiarugi P (2003) Reactive oxygen species as mediators of cell adhesion. Ital J Biochem, 52: 28–32PubMedGoogle Scholar
  18. Ciccia A, Elledge S J (2010). The DNA damage response: making it safe to play with knives. Mol Cell, 40(2): 179–204PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cifra M, Pokornč J, Havelka D, Kučera O (2010). Electric field generated by axial longitudinal vibration modes of microtubule. Biosystems, 100(2): 122–131PubMedCrossRefGoogle Scholar
  20. Cifra M, Pospisil P (2014). Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J Photochem Photobiol B, 139: 2–10PubMedCrossRefGoogle Scholar
  21. Coghlin C, Murray G I (2010). Current and emerging concepts in tumour metastasis. J Pathol, 222(1): 1–15PubMedCrossRefGoogle Scholar
  22. Cohen S, Popp F A (2003). Biophoton emission of human body. Indian J Exp Biol, 41: 440–445PubMedGoogle Scholar
  23. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 17(10): 1195–1214PubMedCrossRefGoogle Scholar
  24. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 17(10): 1195–1214PubMedCrossRefGoogle Scholar
  25. Creath K, Schwartz G E (2004). Biophoton images of plants: revealing the light within. J Altern Complement Med, 10(1): 23–26PubMedCrossRefGoogle Scholar
  26. Feig D I, Reid T M, Loeb L A (1994). Reactive oxygen species in tumorigenesis. Cancer Res, 54 (7 Suppl): 1890sGoogle Scholar
  27. Davies K J A (2001). Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life, 50(4): 279–289CrossRefGoogle Scholar
  28. Day B J, Batinic-Haberle I, Crapo J D (1999). Metalloporphyrins are potent inhibitors of lipid peroxidation. Free Radic Biol Med, 26(5-6): 730–736PubMedCrossRefGoogle Scholar
  29. Day B J, Fridovich I, Crapo J D (1997). Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch Biochem Biophys, 347(2): 256–262PubMedCrossRefGoogle Scholar
  30. Degan P, Bonassi S, De Caterina M, Korkina L G, Pinto L, Scopacasa F, Zatterale A, Calzone R, Pagano G (1995). In vivo accumulation of 8-hydroxy-2′-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi’s anaemia families. Carcinogenesis, 16(4): 735–741PubMedCrossRefGoogle Scholar
  31. Deriu M A, Soncini M, Orsi M, Patel M, Essex J W, Montevecchi F M, Redaelli A (2010). Anisotropic Elastic Network Modeling of Entire Microtubules. Biophys J, 99(7): 2190–2199PubMedPubMedCentralCrossRefGoogle Scholar
  32. Deshpande N N, Sorescu D, Seshiah P, Ushio-Fukai M, Akers M, Yin Q, Griendling K K (2002). Mechanism of hydrogen peroxide-induced cell cycle arrest in vascular smooth muscle. Antioxid Redox Signal, 4 (5): 845–854PubMedCrossRefGoogle Scholar
  33. Dinh T V (2010). Biomedical Photonics Handbook. CRC PressGoogle Scholar
  34. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002). Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med, 32(11): 1102–1115PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dotta B T, Buckner C A, Cameron D, Lafrenie R F, Persinger M A (2011). Biophoton emissions from cell cultures: biochemical evidence for the plasma membrane as the primary source. Gen Physiol Biophys, 30: 301–309PubMedGoogle Scholar
  36. Emerit I (1994). Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. F ree Radic Biol Med, 16(1): 99–109CrossRefGoogle Scholar
  37. Emerit I (2007). Clastogenic factors as potential biomarkers of increased superoxide production. B iomark Insights, 2: 429–438Google Scholar
  38. Ferrari M, Quaresima V (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 63(2): 921–935PubMedCrossRefGoogle Scholar
  39. Ferraro P, Wax A, Zalevsky Z (2011). Coherent Light Microscopy: Imaging and Quantitative Phase Analysis. SpringerGoogle Scholar
  40. Floryszak-Wieczorek J, Go’rski Z, Arasimowicz-Jelonek M (2011). Functional imaging of biophoton responses of plants to fungal infection. Eur J Plant Pathol, 130(2): 249–258CrossRefGoogle Scholar
  41. Gartel A L, Radhakrishnan S K (2005). Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res, 65(10): 3980–3985PubMedCrossRefGoogle Scholar
  42. Griendling K K, FitzGerald G A (2003). Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation, 108(16): 1912–1916PubMedCrossRefGoogle Scholar
  43. Guo Y, Tan J (2013). A biophotonic sensing method for plant drought stress. Sens Actuators B Chem, 188: 519–524CrossRefGoogle Scholar
  44. Halliwell B, Gutteridge J M C (1985). Free radicals in biology and medicine. J Free Rad Biol Med, 1 (4):331–332CrossRefGoogle Scholar
  45. Hanahan D, Weinberg R A (2011). Hallmarks of cancer: the next generation. Cell, 144 (5): 646PubMedCrossRefPubMedCentralGoogle Scholar
  46. Held P (2015). An Introduction to Reactive Oxygen Species; Measurement of ROS in Cells White papersGoogle Scholar
  47. Hideg E (1993). On the spontaneous ultraweak light emission of plants. J Photochem Photobiol B, 18(2-3): 239–244CrossRefGoogle Scholar
  48. Hossu M, Ma L, Zou X, Chen W (2013). Enhancement of biophoton emission of prostate cancer cells by Ag nanoparticles. Cancer Nanotechnol, 4(1-3): 21–26PubMedPubMedCentralCrossRefGoogle Scholar
  49. Inoue M, Sato E F, Nishikawa M, Park A M, Kira Y, Imada I, Utsumi K (2003). Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem, 10(23): 2495–2505PubMedCrossRefGoogle Scholar
  50. Kai S (2012). Biophoton: collection of photon-images. Forma, 27: S45–S48Google Scholar
  51. Kamal A H, Komatsu S (2015). Involvement of reactive oxygen species and mitochondrial proteins in biophoton emission in roots of soybean plants under flooding stress. J Proteome Res, 14(5): 2219–2236PubMedCrossRefGoogle Scholar
  52. Kamal A H, Komatsu S (2016). Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions. Mol Biol Rep, 43(2): 73–89PubMedCrossRefGoogle Scholar
  53. Kanofsky J R (2011). Measurement of singlet-oxygen in vivo: progress and pitfalls. Photochem Photobiol, 87(1): 14–17PubMedCrossRefGoogle Scholar
  54. Kasprzak K S (2002). Oxidative DNA and protein damage in metalinduced toxicity and carcinogenesis. Free Radic Biol Med, 32(10): 958–967PubMedCrossRefGoogle Scholar
  55. Kataoka Y, Cui Y, Yamagata A, Niigaki M, Hirohata T, Oishi N, Watanabe Y (2001). Activity-dependent neural tissue oxidation emits intrinsic ultraweak photons. Biochem Biophys Res Commun, 285(4): 1007–1011PubMedCrossRefGoogle Scholar
  56. Klaunig J E, Xu Y, Bachowski S, Jiang J (1997). Free-radical oxygeninduced changes in chemical carcinogenesis. Free Radical Toxicology, 375–400Google Scholar
  57. Klotter J (2010). Light, Cancer and Fritz-Albert PoppGoogle Scholar
  58. Kobayashi K. (2003). Spontaneous ultraweak photon emission of living organisms—biophotons—phenomena and detection techniques for extracting biological information. Trends in Photohchem. Photobiol, 10: 111–135Google Scholar
  59. Kobayashi M, Kikuchi D, Okamura H (2009). Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm. PLoS One, 4(7): e6256PubMedPubMedCentralCrossRefGoogle Scholar
  60. Komatsu S, Kamal A H, Makino T, Hossain Z (2014). Ultraweak photon emission and proteomics analyses in soybean under abiotic stress. Biochim Biophys Acta, 1844(7): 1208–1218PubMedCrossRefGoogle Scholar
  61. Kops G J, Dansen T B, Polderman P E, Saarloos I, Wirtz K W, Coffer P J, Huang T T, Bos J L, Medema R H, Burgering B M (2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 419(6904): 316–321PubMedCrossRefGoogle Scholar
  62. Larason T C, Bruce S S, Parr A C (1998). NIST Measurement Services: Spectroradiometric Detector Measurements: Part I-Ultraviolet Detectors and Part II-Visible to Near-Infrared Detectors. National Institute of Standards and Technology (USA) Special PublicationGoogle Scholar
  63. Lau A T, Wang Y, Chiu J F (2008). Reactive oxygen species: current knowledge and applications in cancer research and therapeutic. J Cell Biochem, 104(2): 657–667PubMedCrossRefGoogle Scholar
  64. Liebel F, Kaur S, Ruvolo E, Kollias N, Southall M D (2012). Irradiation of skin with visible light induces reactive oxygen species and matrixdegrading enzymes. J Invest Dermatol, 132(7): 1901–1907PubMedCrossRefGoogle Scholar
  65. Lindholm C, Acheva A, Salomaa S (2010). Clastogenic plasma factors: a short overview. Radiat Environ Biophys, 49(2): 133–138PubMedCrossRefGoogle Scholar
  66. Liu J, Yeo H C, Overvik-Douki E, Hagen T, Doniger S J, Chu D W, Brooks G A, Ames B N (2002). Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol B, 89(1): 21–28CrossRefGoogle Scholar
  67. Liu Y W, Sakaeda T, Takara K, Nakamura T, Ohmoto N, Komoto C, Kobayashi H, Yagami T, Okamura N, Okumura K (2003). Effects of Reactive oxygen species on cell proliferation and death in HeLa Cells and its MDR1-overexpressing derivative cell line. Biol Pharm Bull, 26(2): 278–281PubMedCrossRefGoogle Scholar
  68. Lorch S, Lightfoot R, Ohshima H, Virag L, Chen Q, Hertkorn C, Weiss M, Souza J, Ischiropoulos H, Yermilov V, Pignatelli B, Masuda M, Szabo C (2002). Detection of peroxynitrite-induced protein and DNA modifications. Methods Mol Biol, 196: 247–275PubMedGoogle Scholar
  69. Lozneanu E, Sanduloviciu M (2008). Physical Basis Of Biophoton Emission And Intercellular Communication. Rom Rep Phys, 60(3): 885–898Google Scholar
  70. Maitland K, Wang T D (2013). “Endoscopy,”in Biomedical Technology and Devices Handbook. Taylor and Francis, New YorkGoogle Scholar
  71. Marnett L J (2000a). Oxyradicals and DNA damage. Carcinegensis, 21 (3): 361–370CrossRefGoogle Scholar
  72. Mason W T (1999). Fluorescent and Luminescent Probes for Biological Activity, Massachusetts.Google Scholar
  73. Montillet J L, Chamnongpol S, Rusterucci C, Dat J, van de Cotte B, Agnel J P, Battesti C, Inze D, Van Breusegem F, Triantaphylides C (2005). Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol, 138(3): 1516–1526PubMedPubMedCentralCrossRefGoogle Scholar
  74. Morgan W F (2003). Non-targeted and delayed eVects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res, 159(5): 567–580PubMedGoogle Scholar
  75. Muhammad N, Mohammad R, Kashif M, Liaqat I (2017). The Darkness Brings Light in the Field of Bio-Communication Through Melatonin Production. Advances in Applied Science Research, 8: 50–61Google Scholar
  76. Nelson K K, Melendez J A (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med, 37(6): 768–784PubMedCrossRefGoogle Scholar
  77. Norppa H, Bonassi S, Hansteen I L, Hagmar L, Stromberg U, Rossner P, Boffetta P, Lindholm C, Gundy S, Lazutka J, Cebulska-Wasilewska A, Fabianova E, Sram R J, Knudsen L E, Barale R, Fucic A (2006). Chromosomal aberrations and SCEs as biomarkers of cancer risk. Mutat Res, 600(1-2): 37–45PubMedCrossRefGoogle Scholar
  78. Ogilby P R (2010). Singlet oxygen: there is indeed something new under the sun. Chem Soc Rev, 39(8): 3181–3209PubMedCrossRefGoogle Scholar
  79. Owrutsky J C, Li M, Locke B, Hochstrasser R M (1995). Vibrational relaxation of the CO stretch vibration in hemoglobin-CO, myoglobin- CO, and pro-toheme-CO. J Phys Chem, 99(13): 4842–4846CrossRefGoogle Scholar
  80. Atkius P, Paula JD. (2002). Physical Chemistry. W.H. Freeman, New York Chiarugi P (2008) Src redox regulation: there is more than meets the eye. Mol Cell, 26: 329–337Google Scholar
  81. Pang X F (2012). The mechanism and properties of bio-photon emission and absorption in protein molecules in living systems. J Appl Phys, 111 (9):117–134CrossRefGoogle Scholar
  82. Pang X F (1995). A molecular dynamic theory of ultraweak bio-photon emission in the living systems and its properties. Chin J At Mol Phys, 12: 411–420Google Scholar
  83. Popp F A (2009). Cancer growth and its inhibition in terms of coherence. Electromagn Biol Med, 28(1): 53–60PubMedCrossRefGoogle Scholar
  84. Pospisil P, Prasad A, Rac M (2014). Role of reactive oxygen species in ultra-weak photon emission in biological systems. J Photochem Photobiol B, 139: 11–23PubMedCrossRefGoogle Scholar
  85. Practico D, Lawson J A, Rokach J, Fitzgerald G A (2002). The isoprostanes in biology and medicine. Trends Endocrinol Metab, 12: 243–247CrossRefGoogle Scholar
  86. Prasad A, Pospisil P (2011). Two-dimensional imaging of spontaneous ultra-weak photon emission from the human skin: role of reactive oxygen species. J Biophotonics, 4(11-12): 840–849PubMedCrossRefGoogle Scholar
  87. Prasad A, Pospisil P (2012). Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging. J Biomed Opt, 17(8): 085004PubMedCrossRefGoogle Scholar
  88. Rahnama M, Tuszynski J A, Bókkon I, Cifra M, Sardar P, Salari V, Majid R (2011). Emission of mitochondrial biophotons and their effect on electrical activity of membrane via microtubules. J Integr Neurosci, 10(01): 65–88PubMedCrossRefGoogle Scholar
  89. Rastogi A, Pospisil P (2010). Ultra-weak photon emission as a noninvasive tool for monitoring of oxidative processes in the epidermal cells of human skin: comparative study on the dorsal and the palm side of the hand. Skin Res Tech, 16: 365–370Google Scholar
  90. Rastogi A, Pospisil P (2011). Spontaneous ultraweak photon emission imaging of oxidative metabolic processes in human skin: effect of molecular oxygen and antioxidant defense system. J Biomed Opt, 16 (9): 096005PubMedCrossRefGoogle Scholar
  91. Rastogi A, Pospisil P (2013). Ultra-weak photon emission as a noninvasive tool for the measurement of oxidative stress induced by UVA radiation in Arabidopsis thaliana. J Photochem Photobiol B, 123: 59–64PubMedCrossRefGoogle Scholar
  92. Saar B G, Freudiger CW, Reichman J, Stanley C M, Holtom G R, Xie X S (2010). Video-rate molecular imaging in vivo with stimulated Raman scattering. Science, 330(6009): 1368–1370PubMedPubMedCentralCrossRefGoogle Scholar
  93. Saleh B, Teich M C, Slusher R E (1992). Fundamentals of Photonics. Physics Today, 45 (11): 87–88CrossRefGoogle Scholar
  94. Sauermann G, Mei W P, Hoppe U, Stab F (1999). Ultraweak photon emission of human skin in vivo: influence of topically applied antioxidants on human skin. Methods Enzymol, 300: 419–428PubMedCrossRefGoogle Scholar
  95. Savage L M (2006). On the path toward more useful fluorophores. Biophoton Int, 2: 34–37Google Scholar
  96. Shen X, Bei L, Hu T H, Aryal B (2000). The possible role played by biophotons in the long-range interaction between neutrophil leukocytesGoogle Scholar
  97. Shukla A, Gulumian M, Hei T K, Kamp D, Rahman QMB, Mossman B T (2003). Multiple roles of oxidants in the pathogenesis of asbestosinduced diseases. Free Radic Biol Med, 34(9): 1117–1129Google Scholar
  98. Solli D R, Chou J, Jalali B (2008). Amplified wavelength–time transformation for real-time spectroscopy. Nat Photonics, 2(1): 48–51CrossRefGoogle Scholar
  99. Storz P(2005) Reactive oxygen species in tumor progression. Front Biosc, 10, 1881–1896Google Scholar
  100. Suhalim J L, Boik J C, Tromberg B J, Potma E O (2012). The need for speed. J Biophotonics, 5(5-6): 387–395PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tafur J, Van Wijk E P, Van Wijk R, Mills P J (2010). Biophoton detection and low-intensity light therapy: a potential clinical partnership. Photomed Laser Surg, 28(1): 23–30PubMedPubMedCentralCrossRefGoogle Scholar
  102. Takedaa M, Tanno Y, Kobayashi M, Usa M, Ohuchib N, Satomi S (1998). A novel method of assessing carcinoma cell proliferation by biophoton emission. Cancer Lett, 127(1-2): 155–160CrossRefGoogle Scholar
  103. Tennenbaum, J (1998–1999). Beyond Molecular Biology The Biophoton RevolutionGoogle Scholar
  104. Tsia K K (2015) Fundamentals, Advances and Applications. CRC Press, Taylor & Francis Group. Understanding of Biophotonics.CrossRefGoogle Scholar
  105. Tulah A S, Birch-Machin M A (2013). Stressed out mitochondria: the role of mitochondria in ageing and cancer focussing on strategies and opportunities in human skin. Mitochondrion, 13(5): 444–453PubMedCrossRefGoogle Scholar
  106. Vafa O, Wade M, Kern S, Beeche M, Pandita T K, Hampton G M, Wahl G M (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell, 9(5): 1031–1044PubMedCrossRefGoogle Scholar
  107. Valko M, Izakovic M, Mazur M, Rhodes C J, Telser J (2004). Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem, 266(1/2): 37–56PubMedCrossRefGoogle Scholar
  108. Valkoa M, Rhodes C J, Moncol J, Izakovic M, Mazur M (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact, 160(1): 1–40CrossRefGoogle Scholar
  109. Van Wijk R, Kobayashi M, Van Wijk E P (2006a). Anatomic characterization of human ultra-weak photon emission with a moveable photomultiplier and CCD imaging. J Photochem Photobiol B, 83(1): 69–76PubMedCrossRefGoogle Scholar
  110. Van Wijk R, Van Wijk E P, Bajpai R P (2006b). Photocount distribution of photons emitted from three sites of a human body. J Photochem Photobiol B, 84(1): 46–55PubMedCrossRefGoogle Scholar
  111. VanWijk R, VanWijk E P, Wiegant F A, Ives J (2008). Free radicals and low-level photon emission in human pathogenesis: state of the art. Indian J Exp Biol, 46: 273–309Google Scholar
  112. Vladimirov Y A, Proskurnina V (2009). Free radicals and cell chemiluminescence. Biochemistry (Mosc), 74(13): 1545–1566CrossRefGoogle Scholar
  113. Wang L V, Wu H (2007). Biomedical Optics: Principles and Imaging. Wiley-InterscienceGoogle Scholar
  114. Watts B P, Barnard M, Turrens J F (1995). Peroxynitrite-dependent chemiluminescence of amino acids, proteins, and intact cells. Arch Biochem Biophys, 317(2): 324–330PubMedCrossRefGoogle Scholar
  115. Winkler R, Guttenberger H, Klima H (2009). Ultraweak and induced photon emission after wounding of plants. Photochem Photobiol, 85 (4): 962–965PubMedCrossRefGoogle Scholar
  116. Wiseman H, Halliwell B (1996b). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J, 313(Pt 1): 17–29PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wiseman H, Halliwell B, and the WISEMAN (1996a). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J, 313(1): 17–29PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wright J R, Rumbaugh R C, Colby H D, Miles P R (1979). The relationship between chemiluminescence and lipid peroxidation in rat hepatic microsomes. Arch Biochem Biophys, 192(2): 344–351PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad Naveed
    • 1
    Email author
  • Mohammad Raees
    • 2
  • Irfan Liaqat
    • 2
  • Mohammad Kashif
    • 2
  1. 1.Department of Biotechnology, Faculty of Life SciencesUniversity Central PunjabLahorePakistan
  2. 2.Department of Biochemistry and BiotechnologyUniversity of GujratPakistanPakistan

Personalised recommendations