Advertisement

Frontiers in Biology

, Volume 13, Issue 3, pp 157–167 | Cite as

Siberian plants: untapped repertoire of bioactive endosymbionts

  • Syed BakerEmail author
  • Svetlana V. Prudnikova
  • Tatiana Volova
Review
  • 34 Downloads

Abstract

Background

Endosymbionts are microorganisms present in all plant species, and constitute the subject of interest among the scientific community. These symbionts have gained considerable attention in recent years, owing to their emerging biological roles. Global challenges, such as antimicrobial resistance, treatment of infectious diseases such as HIV and tuberculosis, cancer, and many genetic disorders, exist. Endosymbionts can help address these challenges by secreting valueadded bioactive compounds with various activities.

Objective

Herein, we describe the importance of plants inhabiting Siberian niches. These plants are considered to be among the least studied organisms in the plant kingdom worldwide. Barcoding these plants can be of interest for exploring bioactive endosymbionts possessing myriad biological properties.

Methods

A systematic survey of relevant scientific reports was conducted using the PubMed search engine. The reports were analyzed, and compiled to draft this review.

Results

The literature survey on Siberian plants regarding endosymbionts included a few reports, since extremely few exploratory studies have been conducted on the plants in these regions. Studies on the endosymbionts of these plants are highly valuable, as they report potent endosymbionts possessing numerous biological properties. Based on these considerations, this review aims to create awareness among the global scientific community working on related areas.

Conclusion

This review could provide the basis for barcoding novel endosymbionts of Siberian plants and their ecological importance, which can be exploited in various sectors. The main purpose of this review is to create awareness of Siberian plants, which are among the least studied organisms in the plant kingdom, with respect to endosymbionts, among the scientific community.

Keywords

endosymbiont endophyte siberian plant bioactive metabolite novel compound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to the Ministry of Education and Science of the Russian Federation for providing funding under the 5–100: Russian Academic Excellence Project. The authors are grateful for the facilities provided by the Siberian Federal University.

References

  1. Abdou R, Scherlach K, Dahse H M, Sattler I, Hertweck C (2010). Botryorhodines A-D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry, 71(1): 110–116CrossRefPubMedGoogle Scholar
  2. Abhijeet Singh Y M (2014). Understanding the biodiversity and biological applications of endophytic fungi. J Microb Biochem Technol, s8(01): 004CrossRefGoogle Scholar
  3. Alm T (2004). Ethnobotany of Rhodiola rosea (Crassulaceae) in Norway. SIDA Contrib Bot, 21: 321–344Google Scholar
  4. Amna T, Puri S C, Verma V, Sharma J P, Khajuria R K, Musarrat J, Spiteller M, Qazi G N (2006). Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol, 52(3): 189–196CrossRefPubMedGoogle Scholar
  5. Arnold A E (2005). Diversity and ecology of fungal endophytes in tropical forests. 49–68. In: Deshmukh S (Ed.). Current Trends in Mycological Research. New Delhi, Oxford & IBH Publishing Co. Pvt. Ltd.Google Scholar
  6. Azevedo J L, Maccheroni W Jr, Pereira J O, De Araújo W L (2000). Endophytic microorganisms: A review on insect control and recent advances on tropical plants. Electron J Biotechnol, 3(1): 40–65CrossRefGoogle Scholar
  7. Baker S, Kavitha K S, Chinnappa H, Rao Y, Rakshith D, Harini B P, Kumar K, Satish S (2015). Bacterial endo-symbiont inhabiting Tridax procumbens L. and their antimicrobial potential. Zhongguo Shengwuzhipinxue Zazhi, 2015(2): 1473–1476Google Scholar
  8. Baker S, Rakshith D, Kavitha K S, Santosh P, Kavitha H U, Rao Y, Satish S (2013). Plants: Emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts, 3: 111–117PubMedPubMedCentralGoogle Scholar
  9. Baker S, Satish S (2012). Endophytes: Natural warehouse of bioactive compounds. Drug Invent Today, 4: 548–553Google Scholar
  10. Baker S, Satish S (2015). Biosynthesis of gold nanoparticles by Pseudomonas veronii AS41G inhabiting Annona squamosa L. Spectrochim Acta A Mol Biomol Spectrosc, 150: 691–695CrossRefPubMedGoogle Scholar
  11. Banerjee D, Strobel G A, Booth E, Geary B, Sears J, Spakowicz D, Busse S (2010). An endophytic Myrothecium inundatum producing volatile organic compounds. Mycosphere, 1: 229–240Google Scholar
  12. Bangera M G, Thomashow L S (1999). Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4- diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol, 181(10): 3155–3163PubMedPubMedCentralGoogle Scholar
  13. Bayoumi M T, Shaer H M E (1994). Impact of halophytes on animal health and nutrition. Halophytes as a resource for livestock and for rehabilitation of degraded lands Tasks for vegetation science, 267–272.Google Scholar
  14. Bertozzi S, Padian N S, Wegbreit J, DeMaria L M, Feldman B, Gayle H, Gold J, Grant R, Isbell M T (2006). HIV/AIDS Prevention and Treatment. In: Dis Control Priorities Dev Ctries. 331–370.Google Scholar
  15. Castillo U F, Strobel G A, Ford E J, Hess W M, Porter H, Jensen J B, Albert H, Robison R, Condron M A M, Teplow D B, Stevens D, Yaver D (2002). Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology, 148(Pt 9): 2675–2685CrossRefPubMedGoogle Scholar
  16. Chikhi I, Allali H, El Amine Dib M, Medjdoub H, Tabti B (2014). Antidiabetic activity of aqueous leaf extract of Atriplex halimus L. (Chenopodiaceae) in streptozotocin-induced diabetic rats. Asian Pac J Trop Dis, 4(3): 181–184CrossRefGoogle Scholar
  17. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005). Endophytic colonization of Vitis vinifera L. by plant growthpromoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol, 71(4): 1685–1693Google Scholar
  18. Deshmukh S K, Mishra P D, Kulkarni-Almeida A, Verekar S, Sahoo M R, Periyasamy G, Goswami H, Khanna A, Balakrishnan A, Vishwakarma R (2009). Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chem Biodivers, 6 (5): 784–789CrossRefPubMedGoogle Scholar
  19. Dhankhar S, Dhankhar S, Yadav J P (2013). Investigations towards new antidiabetic drugs from fungal endophytes associated with Salvadora oleoides Decne. Med Chem, 9(4): 624–632CrossRefPubMedGoogle Scholar
  20. Ding L, Münch J, Goerls H, Maier A, Fiebig H H, LinWH, Hertweck C (2010). Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorg Med Chem Lett, 20(22): 6685–6687CrossRefPubMedGoogle Scholar
  21. Dompeipen E J, Srikandace Y, Suharso W P, Cahyana H, Simanjuntak P (2011). Potential endophytic microbes selection for antidiabetic bioactive compounds production. Asian J Biochem, 6(6): 465–471CrossRefGoogle Scholar
  22. Dragoeva A P, Koleva V P, Nanova Z D, Georgiev B P (2015). Allelopathic effects of Adonis vernalis L.: Root growth inhibition and cytogenetic alterations. J Agric Chem Environ, 4: 48–55Google Scholar
  23. Ezra D, Castillo U F, Strobel G A, Hess W M, Porter H, Jensen J B, CondronMA, Teplow D B, Sears J, Maranta M, Hunter M,Weber B, Yaver D (2004). Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology, 150(Pt 4): 785–793CrossRefPubMedGoogle Scholar
  24. Farrar K, Bryant D, Cope-Selby N (2014). Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J, 12(9): 1193–1206CrossRefPubMedPubMedCentralGoogle Scholar
  25. Franke D, Hinz K, Reichert C (2004). Geology of the East Siberian Sea, Russian Arctic, from seismic images: Structures, evolution, and implications for the evolution of the Arctic Ocean Basin. J Geophys Res B Solid Earth, 109(7): 1–19Google Scholar
  26. Gaiero J R, McCall C A, Thompson K A, Day N J, Best A S, Dunfield K E (2013). Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot, 100(9): 1738–1750CrossRefPubMedPubMedCentralGoogle Scholar
  27. Govindappa M, Channabasava R, Sowmya D V, Meenakshi J, Shreevidya M R, Lavanya A, Santoyo G, Sadananda T S (2011). Phytochemical screening, antimicrobial and in vitro anti-inflammatory activity of endophytic extracts from Loranthus sp. Pharmacogn J, 3(25): 82–90CrossRefGoogle Scholar
  28. Guan S, Grabley S, Groth I, Lin W, Christner A, Guo D, Sattler I (2005). Structure determination of germacrane-type sesquiterpene alcohols from an endophyte Streptomyces griseus subsp. Magn Reson Chem, 43(12): 1028–1031CrossRefPubMedGoogle Scholar
  29. Guimarães D O, Borges W S, Kawano C Y, Ribeiro P H, Goldman G H, Nomizo A, Thiemann O H, Oliva G, Lopes N P, Pupo M T (2008). Biological activities from extracts of endophytic fungi isolated from Viguiera arenaria and Tithonia diversifolia. FEMS Immunol Med Microbiol, 52(1): 134–144CrossRefPubMedGoogle Scholar
  30. Guo B, Dai J R, Ng S, Huang Y, Leong C, Ong W, Carté B K (2000). Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod, 63(5): 602–604CrossRefPubMedGoogle Scholar
  31. Hale I L, Broders K, Iriarte G (2014). A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity. Front Plant Sci, 5: 492CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hardoim P R, van Overbeek L S, Berg G, Pirttilä A M, Compant S, Campisano A, Döring M, Sessitsch A (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev, 79(3): 293–320CrossRefPubMedPubMedCentralGoogle Scholar
  33. HilarinoMP A, Silveira F A O, Oki Y, Rodrigues L, Santos J C, Correa- Junior A, Fernandes G W, Rosa C A (2011). Distribution of the endophytic fungi community in leaves of Bauhinia brevipes (Fabaceae). Acta Bot Bras, 25(4): 815–821CrossRefGoogle Scholar
  34. Inahashi Y, Iwatsuki M, Ishiyama A, Namatame M, Nishihara- Tsukashima A, Matsumoto A, Hirose T, Sunazuka T, Yamada H, Otoguro K, Takahashi Y, Omura S, Shiomi K (2011). Spoxazomicins A-C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07-0460(T). J Antibiot (Tokyo), 64(4): 303–307CrossRefGoogle Scholar
  35. Karmakar R, Kumar S, Prakash H S (2013). Fungal endophytes from Garcinia species. Int J Pharm Pharm Sci, 5: 889–897Google Scholar
  36. Kavitha K, Baker S, Rakshith D, Kavitha H, Yashwantha Rao H, Harini B, Satish S (2013). Plants as Green source towards synthesis of nanoparticles. Int Res J Biol Sci, 2: 66–76Google Scholar
  37. Kharwar R N, Verma V C, Strobel G, Ezra D (2008). The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr Sci, 95: 228–233Google Scholar
  38. Kim DM, Nam BW(2006). Extracts and essential oil of Ledum palustre L. leaves and their antioxidant and antimicrobial activities. Prev Nutr Food Sci, 11(2): 100–104CrossRefGoogle Scholar
  39. Kokoska L, Janovska D (2009). Chemistry and pharmacology of Rhaponticum carthamoides: a review. Phytochemistry, 70(7): 842–855CrossRefPubMedGoogle Scholar
  40. Kokoska L, Polesny Z, Rada V, Nepovim A, Vanek T (2002). Screening of some Siberian medicinal plants for antimicrobial activity. J Ethnopharmacol, 82(1): 51–53CrossRefPubMedGoogle Scholar
  41. Kusari S, Hertweck C, Spiteller M (2012). Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol, 19 (7): 792–798CrossRefPubMedGoogle Scholar
  42. Li J Y, Harper J K, Grant D M, Tombe B O, Bashyal B, Hess W M, Strobel G A (2001). Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry, 56(5): 463–468CrossRefPubMedGoogle Scholar
  43. Liang J, Chen J, Tan Z, Peng J, Zheng X, Nishiura K, Ng J, Wang Z, Wang D, Chen Z, Liu L (2013). Extracts of medicinal herb Sanguisorba officinalisinhibit the entry of human immunodeficiency virus type one. Yao Wu Shi Pin Fen Xi, 21(4): S52–S58PubMedPubMedCentralGoogle Scholar
  44. Lotocka B, Geszprych A (2004). Anatomy of the vegetative organs and secretory structures of Rhaponticum carthamoides (Asteraceae). Bot J Linn Soc, 144(2): 207–233CrossRefGoogle Scholar
  45. Maji A, Banerji P (2015). Chelidonium majus L.(Greater celandine)–A review on its phytochemical and therapeutic perspectives. Int J Herb Med, 3(1): 10–27CrossRefGoogle Scholar
  46. Marchev A S, Dinkova-Kostova A T, Gyrgy Z, Mirmazloum I, Aneva I Y, Georgiev M I (2016). Rhodiola rosea L.: from golden root to green cell factories. Phytochem Rev, 15(4): 515–536CrossRefGoogle Scholar
  47. Miller CM, Miller R V, Garton-Kenny D, Redgrave B, Sears J, Condron M M, Teplow D B, Strobel G A (1998). Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol, 84(6): 937–944CrossRefPubMedGoogle Scholar
  48. Nadeem M, Ram M, Alam P, Ahmad M M, Mohammad A, Al-Qurainy F, Khan S, AbdinMZ (2012). Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr J Microbiol Res, 6: 2493–2499Google Scholar
  49. Nair D N, Padmavathy S (2014). Impact of endophytic microorganisms on plants, environment and humans. Sci World J, 2014: 250693CrossRefGoogle Scholar
  50. Newman D J, Cragg G M (2015). Endophytic and epiphytic microbes as “sources” of bioactive agents. Front Chem, 3: 34CrossRefPubMedPubMedCentralGoogle Scholar
  51. Opletal L, Sovova M, Dittrich M, Solich P, Dvorak J, Kratky F, Cerovsky J, Hofbauer J (1997). Phytotherapeutic aspects of diseases of the circulatory system. 6. Leuzea carthamoides (WILLD.).Google Scholar
  52. Pan J H, Chen Y, Huang Y H, Tao Y W, Wang J, Li Y, Peng Y, Dong T, Lai X M, Lin Y C (2011). Antimycobacterial activity of fusaric acid from a mangrove endophyte and its metal complexes. Arch Pharm Res, 34(7): 1177–1181CrossRefPubMedGoogle Scholar
  53. Panossian A, Wikman G, Sarris J (2010). Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine, 17(7): 481–493CrossRefPubMedGoogle Scholar
  54. Partida-Martínez L P, Heil M (2011). The microbe-free plant: fact or artifact? Front Plant Sci, 2: 100CrossRefPubMedPubMedCentralGoogle Scholar
  55. Popov S V, Popova G Y, Nikolaeva S Y, Golovchenko V V, Ovodova R G (2005). Immunostimulating activity of pectic polysaccharide from Bergenia crassifolia (L.) Fritsch. Phytother Res, 19(12): 1052–1056CrossRefPubMedGoogle Scholar
  56. Powledge T M (2011). Behavioral epigenetics: How nurture shapes nature. Bioscience, 61(8): 588–592CrossRefGoogle Scholar
  57. Qin J C, Zhang Y M, Gao J M, Bai M S, Yang S X, Laatsch H, Zhang A L (2009). Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett, 19(6): 1572–1574CrossRefPubMedGoogle Scholar
  58. Raiklin E (2008). The Chinese challenge to Russia in Siberia and the Russian Far East. J Soc Polit Econ Stud, 33: 145–204Google Scholar
  59. Rather M A, Mansoor S, Bhat Z S, Amin S (2016). Evaluation of antimicrobial and antioxidant activities of Swertia petiolata. Adv Biomed Pharma, 5: 272–279Google Scholar
  60. Rodrigues-Heerklotz K F, Drandarov K, Heerldotz J, Hesse M,Werner C (2001). Guignardic acid, a novel type of secondary metabolite produced by the endophytic fungus Guignardia sp.: isolation, structure elucidation, and asymmetric synthesis. Helv Chim Acta, 84(12): 3766–3772CrossRefGoogle Scholar
  61. Rodriguez R J, White J F J Jr, Arnold A E, Redman R S (2009). Fungal endophytes: diversity and functional roles. New Phytol, 182(2): 314–330CrossRefPubMedGoogle Scholar
  62. Saikkonen K, Wäli P, Helander M, Faeth S H (2004). Evolution of endophyte-plant symbioses. Trends Plant Sci, 9(6): 275–280CrossRefPubMedGoogle Scholar
  63. Satish S, Raveesha K A, Janardhana G R (1999). Antibacterial activity of plant extracts on phytopathogenic Xanthomonas campestris pathovars. Lett Appl Microbiol, 28(2): 145–147CrossRefGoogle Scholar
  64. Schulz B, Boyle C (2006). What are Endophytes? 9:1–14.Google Scholar
  65. Schulz B, Haas S, Junker C, Andree N, Schobert M (2015). Fungal endophytes are involved in multiple balanced antagonisms. Curr Sci, 109: 39–45Google Scholar
  66. Shikov A N, Pozharitskaya O N, Makarova MN, Makarov V G,Wagner H (2014). Bergenia crassifolia (L.) Fritsch–pharmacology and phytochemistry. Phytomedicine, 21(12): 1534–1542CrossRefPubMedGoogle Scholar
  67. Singh S B, Jayasuriya H, Dewey R, Polishook J D, Dombrowski A W, Zink D L, Guan Z, Collado J, Platas G, Pelaez F, Felock P J, Hazuda D J (2003). Isolation, structure, and HIV-1-integrase inhibitory activity of structurally diverse fungal metabolites. J Ind Microbiol Biotechnol, 30(12): 721–731CrossRefPubMedGoogle Scholar
  68. Song Y C, Li H, Ye Y H, Shan C Y, Yang Y M, Tan R X (2004). Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol Lett, 241(1): 67–72CrossRefPubMedGoogle Scholar
  69. Srobel G, Li J Y, Sugawara F, Koshino H, Harper J, Hess W M (1999). Oocydin A, a chlorinated macrocyclic lactone with potent antioomycete activity from Serratia marcescens. Microbiology, 145(Pt 12): 3557–3564CrossRefPubMedGoogle Scholar
  70. Stadler M, Schulz B (2009). High energy biofuel from endophytic fungi? Trends Plant Sci, 14(7): 353–355CrossRefPubMedGoogle Scholar
  71. Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G (1995). The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. J Nat Prod, 58(9): 1315–1324CrossRefPubMedGoogle Scholar
  72. Strobel G, Daisy B (2003). Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev, 67(4): 491–502CrossRefPubMedPubMedCentralGoogle Scholar
  73. Strobel G, Daisy B, Castillo U, Harper J (2004). Natural products from endophytic microorganisms. J Nat Prod, 67(2): 257–268CrossRefPubMedGoogle Scholar
  74. Svidén G A, Tham K, Borell L (2010). Involvement in everyday life for people with a life threatening illness. Palliat Support Care, 8(3): 345–352CrossRefPubMedGoogle Scholar
  75. Syed B, Nagendra Prasad M N, Mohan Kumar K, Dhananjaya B L, Satish S (2017). Endo-symbiont mediated synthesis of gold nanobactericides and their activity against human pathogenic bacteria. Environ Toxicol Pharmacol, 52: 143–149CrossRefPubMedGoogle Scholar
  76. Syed B, Nagendra Prasad M N, Satish S (2016). Synthesis and characterization of silver nanobactericides produced by Aneurinibacillus migulanus 141, a novel endophyte inhabiting Mimosa pudica L. Arab J ChemGoogle Scholar
  77. Tchebakova N M, Kuzmina N A, Parfenova E I, Senashova V A, Kuzmin S R (2016). Potential climate-induced distributions of Lophodermium needle cast across central Siberia in the 21 century. Web Ecol, 16(1): 37–39CrossRefGoogle Scholar
  78. Turner J, Bracegirdle T J, Phillips T, Marshall G J, Hosking J S (2012). An initial assessment of antarctic sea ice extent in the CMIP5 models. J Clim, 26(5): 1473–1484CrossRefGoogle Scholar
  79. Vdovitchenko M Y, Kuzovkina I N, Paetz C, Schneider B (2007). Formation of phenolic compounds in the roots of Hedysarum theinum cultured in vitro. Russ J Plant Physiol, 54(4): 536–544CrossRefGoogle Scholar
  80. Xia Y, DeBolt S, Dreyer J, Scott D, Williams M A (2015). Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front Plant Sci, 6: 490CrossRefPubMedPubMedCentralGoogle Scholar
  81. Xue S Y, Li Z Y, Zhi H J, Sun H F, Zhang L Z, Guo X Q, Qin X M (2012). Metabolic finger printing investigation of Tussilago farfara L. by GC-MS and multivariate data analysis. Biochem Syst Ecol, 41: 6–12Google Scholar
  82. Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D (2012). Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proc Natl Acad Sci USA, 109(10): 4008–4013CrossRefPubMedGoogle Scholar
  83. You Y H, Yoon H, Kang SM, Shin J H, Choo Y S, Lee I J, Lee JM, Kim J G (2012). Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J Microbiol Biotechnol, 22(11): 1549–1556CrossRefPubMedGoogle Scholar
  84. Zabalgogeazcoa (2008). Fungal endophytes and their interactions with plant pathogens. Span J Agric Res 6: 138–146Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Syed Baker
    • 1
    Email author
  • Svetlana V. Prudnikova
    • 2
  • Tatiana Volova
    • 3
    • 4
  1. 1.Laboratory of Biotechnology of New MaterialsSiberian Federal UniversityKrasnoyarskRussia
  2. 2.Siberian Federal UniversitySchool of Fundamental Biology and BiotechnologyKrasnoyarskRussia
  3. 3.Institute of Biophysics SB RASFederal Research Center “Krasnoyarsk Science Center SB RAS,”KrasnoyarskRussia
  4. 4.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations