Advertisement

Frontiers in Biology

, Volume 12, Issue 4, pp 241–257 | Cite as

Illuminating the structure and dynamics of chromatin by fluorescence labeling

  • Shipeng Shao
  • Lei Chang
  • Yingping Hou
  • Yujie Sun
Review

Abstract

Background

Visualization of chromosomal loci location and dynamics is crucial for understanding many fundamental intra-nuclear processes such as DNA transcription, replication, and repair.

Objective

Here, we will describe the development of fluorescence labeling methods for chromatin imaging, including traditional as well as emerging chromatin labeling techniques in both fixed and live cells.We will also discuss current issues and provide a perspective on future developments and applications of the chromatin labeling technology.

Methods

A systematic literature search was performed using the PubMed. Studies published over the past 50 years were considered for review. More than 100 articles were cited in this review.

Results

Taking into account sensitivity, specificity, and spatiotemporal resolution, fluorescence labeling and imaging has been the most prevalent approach for chromatin visualization. Among all the fluorescent labeling tools, the adoption of genome editing tools, such as TALE and CRISPR, have great potential for the labeling and imaging of chromatin.

Conclusion

Although a number of chromatin labeling techniques are available for both fixed and live cells, much more effort is still clearly required to develop fluorescence labeling methods capable of targeting arbitrary sequences non-intrusively to allow long-term, multiplexing, and high-throughput imaging of genomic loci and chromatin structures. The emerging technological advances will outline a next-generation effort toward the comprehensive delineation of chromatin at single-cell level with single-molecule resolution.

Keywords

chromatin structure and dynamics FROS FISH TALE CRISPR/Cas9 single-guide RNA Suntag super-resolution imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by grants from the National Science Foundation of China 21573013, 21390412, 31271423, and 31327901, 863 Program SS2015AA020406 and CAS Interdisciplinary Innovation Team for Y.S.

References

  1. Abney J R, Cutler B, Fillbach M L, Axelrod D, Scalettar B A (1997). Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J Cell Biol, 137(7): 1459–1468PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aizer A, Brody Y, Ler L W, Sonenberg N, Singer R H, Shav-Tal Y (2008). The dynamics of mammalian P body transport, assembly, and disassembly in vivo. Mol Biol Cell, 19(10): 4154–4166PubMedPubMedCentralCrossRefGoogle Scholar
  3. Backlund M P, Joyner R, Weis K, Moerner W E (2014). Correlations of three-dimensional motion of chromosomal loci in yeast revealed by the double-helix point spread function microscope. Mol Biol Cell, 25(22): 3619–3629PubMedPubMedCentralCrossRefGoogle Scholar
  4. Badique F, Stamov D R, Davidson P M, Veuillet M, Reiter G, Freund J N, Franz C M, Anselme K (2013). Directing nuclear deformation on micropillared surfaces by substrate geometry and cytoskeleton organization. Biomaterials, 34(12): 2991–3001PubMedCrossRefGoogle Scholar
  5. Beliveau B J, Boettiger A N, Avendaño M S, Jungmann R, McCole R B, Joyce E F, Kim-Kiselak C, Bantignies F, Fonseka C Y, Erceg J, Hannan M A, Hoang H G, Colognori D, Lee J T, Shih W M, Yin P, Zhuang X, Wu C T (2015). Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat Commun, 6: 7147PubMedPubMedCentralCrossRefGoogle Scholar
  6. Beliveau B J, Joyce E F, Apostolopoulos N, Yilmaz F, Fonseka C Y, McCole R B, Chang Y, Li J B, Senaratne T N, Williams B R, Rouillard J M, Wu C T (2012). Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci USA, 109(52): 21301–21306PubMedPubMedCentralCrossRefGoogle Scholar
  7. Belmont A S (2001). Visualizing chromosome dynamics with GFP. Trends Cell Biol, 11(6): 250–257PubMedCrossRefGoogle Scholar
  8. Bertrand E, Chartrand P, Schaefer M, Shenoy S M, Singer R H, Long R M (1998). Localization of ASH1 mRNA particles in living yeast. Mol Cell, 2(4): 437–445PubMedCrossRefGoogle Scholar
  9. Bick M D, Davidson R L (1974). Total substitution of bromodeoxyuridine for thymidine in the DNA of a bromodeoxyuridine-dependent cell line. Proc Natl Acad Sci USA, 71(5): 2082–2086PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bienko M, Crosetto N, Teytelman L, Klemm S, Itzkovitz S, van Oudenaarden A (2013). A versatile genome-scale PCR-based pipeline for high-definition DNA FISH. Nat Methods, 10(2): 122–124PubMedCrossRefGoogle Scholar
  11. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326(5959): 1509–1512PubMedCrossRefGoogle Scholar
  12. Boettiger A N, Bintu B, Moffitt J R, Wang S, Beliveau B J, Fudenberg G, Imakaev M, Mirny L A, Wu C T, Zhuang X (2016). Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature, 529(7586): 418–422PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bohn M, Diesinger P, Kaufmann R, Weiland Y, Müller P, Gunkel M, von Ketteler A, Lemmer P, Hausmann M, Heermann D W, Cremer C (2010). Localization microscopy reveals expression-dependent parameters of chromatin nanostructure. Biophys J, 99(5): 1358–1367PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher M R, Cremer T (2005). Threedimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol, 3(5): e157PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chacón M R, Delivani P, Tolić I M (2016). Meiotic Nuclear Oscillations Are Necessary to Avoid Excessive Chromosome Associations. Cell Reports, 17(6): 1632–1645PubMedCrossRefGoogle Scholar
  16. Chakalova L, Fraser P (2008). Brushed aside and silenced. Dev Cell, 14(4): 461–462PubMedCrossRefGoogle Scholar
  17. Chen B, Gilbert L A, Cimini B A, Schnitzbauer J, Zhang W, Li G W, Park J, Blackburn E H, Weissman J S, Qi L S, Huang B (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155(7): 1479–1491PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen B, Hu J, Almeida R, Liu H, Balakrishnan S, Covill-Cooke C, Lim W A, Huang B (2016). Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res, 44(8): e75PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen B C, Legant W R, Wang K, Shao L, Milkie D E, Davidson M W, Janetopoulos C, Wu X S, Hammer J A 3rd, Liu Z, English B P, Mimori-Kiyosue Y, Romero D P, Ritter A T, Lippincott-Schwartz J, Fritz-Laylin L, Mullins R D, Mitchell D M, Bembenek J N, Reymann A C, Böhme R, Grill S W, Wang J T, Seydoux G, Tulu U S, Kiehart D P, Betzig E (2014). Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 346(6208): 1257998PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cheng A W, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H (2016). Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Res, 26(2): 254–257PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chuang C H, Carpenter A E, Fuchsova B, Johnson T, de Lanerolle P, Belmont A S (2006). Long-range directional movement of an interphase chromosome site. Curr Biol, 16(8): 825–831PubMedCrossRefGoogle Scholar
  22. Cremer M, Grasser F, Lanctôt C, Müller S, Neusser M, Zinner R, Solovei I, Cremer T (2008). Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol, 463: 205–239PubMedCrossRefGoogle Scholar
  23. Cremer T, Cremer C (2001). Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet, 2(4): 292–301PubMedCrossRefGoogle Scholar
  24. Cremer T, Kreth G, Koester H, Fink R H, Heintzmann R, Cremer M, Solovei I, Zink D, Cremer C (2000). Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr, 10(2): 179–212PubMedCrossRefGoogle Scholar
  25. Daigle N, Ellenberg J (2007). LambdaN-GFP: an RNA reporter system for live-cell imaging. Nat Methods, 4(8): 633–636PubMedCrossRefGoogle Scholar
  26. Dekker J, et al (2017). The 4D Nucleome Project. bio RxivGoogle Scholar
  27. Dekker J, Mirny L (2016). The 3D Genome as Moderator of Chromosomal Communication. Cell, 164(6): 1110–1121PubMedPubMedCentralCrossRefGoogle Scholar
  28. Deng W, Lee J, Wang H, Miller J, Reik A, Gregory P D, Dean A, Blobel G A (2012). Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 149(6): 1233–1244PubMedPubMedCentralCrossRefGoogle Scholar
  29. Deng W, Shi X, Tjian R, Lionnet T, Singer R H (2015). CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc Natl Acad Sci USA, 112(38): 11870–11875PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dixon J R, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu J S, Ren B (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485(7398): 376–380PubMedPubMedCentralCrossRefGoogle Scholar
  31. Esvelt K M, Mali P, Braff J L, Moosburner M, Yaung S J, Church G M (2013). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods, 10(11): 1116–1121PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fabre P J, et al (2016). Visualizing the HoxD Gene Cluster at the Nanoscale Level. Cold Spring Harb Symp Quant BiolGoogle Scholar
  33. Fanucchi S, Shibayama Y, Burd S, Weinberg M S, Mhlanga M M (2013). Chromosomal contact permits transcription between coregulated genes. Cell, 155(3): 606–620PubMedCrossRefGoogle Scholar
  34. Finlan L E, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb J R, Bickmore W A (2008). Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet, 4(3): e1000039PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fujita T, Fujii H (2013). Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem Biophys Res Commun, 439(1): 132–136PubMedCrossRefGoogle Scholar
  36. Gall J G, Pardue M L (1969). Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA, 63(2): 378–383PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gebhardt J C, Suter D M, Roy R, Zhao Z W, Chapman A R, Basu S, Maniatis T, Xie X S (2013). Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods, 10(5): 421–426PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gilbert W, Müller-Hill B (1966). Isolation of the lac repressor. Proc Natl Acad Sci USA, 56(6): 1891–1898PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gratzner H G (1982). Monoclonal antibody to 5-bromo- and 5- iododeoxyuridine: A new reagent for detection of DNA replication. Science, 218(4571): 474–475PubMedCrossRefGoogle Scholar
  40. Grimm J B, English B P, Chen J, Slaughter J P, Zhang Z, Revyakin A, Patel R, Macklin J J, Normanno D, Singer R H, Lionnet T, Lavis L D (2015). A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods, 12(3): 244–250, 3, 250PubMedPubMedCentralCrossRefGoogle Scholar
  41. Guan J, Liu H, Shi X, Feng S, Huang B (2017). Tracking multiple genomic elements using correlative CRISPR imaging and sequential DNA FISH. Biophys J, 112(6): 1077–1084PubMedCrossRefGoogle Scholar
  42. Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin D U, Jung I, Wu H, Zhai Y, Tang Y, Lu Y, Wu Y, Jia Z, Li W, Zhang M Q, Ren B, Krainer A R, Maniatis T, Wu Q (2015). CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function. Cell, 162(4): 900–910PubMedPubMedCentralCrossRefGoogle Scholar
  43. Held M, Schmitz M H, Fischer B, Walter T, Neumann B, Olma M H, Peter M, Ellenberg J, Gerlich D W (2010). CellCognition: timeresolved phenotype annotation in high-throughput live cell imaging. Nat Methods, 7(9): 747–754PubMedCrossRefGoogle Scholar
  44. Hillen W, Klock G, Kaffenberger I, Wray L V, Reznikoff W S (1982). Purification of the TET repressor and TET operator from the transposon Tn10 and characterization of their interaction. J Biol Chem, 257(11): 6605–6613PubMedGoogle Scholar
  45. Horvath P, Barrangou R (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962): 167–170PubMedCrossRefGoogle Scholar
  46. Hsu P D, Lander E S, Zhang F (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6): 1262–1278PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hu H, Zhang H, Wang S, Ding M, An H, Hou Y, Yang X, Wei W, Sun Y, Tang C (2017). Live visualization of genomic loci with BiFC-TALE. Sci Rep, 7: 40192PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hübner M R, Spector D L (2010). Chromatin dynamics. Annu Rev Biophys, 39(1): 471–489PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kamiyama D, Sekine S, Barsi-Rhyne B, Hu J, Chen B, Gilbert L A, Ishikawa H, Leonetti M D, Marshall W F, Weissman J S, Huang B (2016). Versatile protein tagging in cells with split fluorescent protein. Nat Commun, 7: 11046PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kanda T, Sullivan K F, Wahl G M (1998). Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol, 8(7): 377–385PubMedCrossRefGoogle Scholar
  51. Kapuscinski J (1995). DAPI: a DNA-specific fluorescent probe. Biotech Histochem, 70(5): 220–233PubMedCrossRefGoogle Scholar
  52. Kepten E, Weron A, Bronstein I, Burnecki K, Garini Y (2015). Uniform Contraction-Expansion Description of Relative Centromere and Telomere Motion. Biophys J, 109(7): 1454–1462PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries S S, Janssen H, Amendola M, Nolen L D, Bickmore W A, van Steensel B (2013). Single-cell dynamics of genome-nuclear lamina interactions. Cell, 153(1): 178–192PubMedCrossRefGoogle Scholar
  54. Kumaran R I, Spector D L (2008). A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol, 180(1): 51–65PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kumaran R I, Thakar R, Spector D L (2008). Chromatin dynamics and gene positioning. Cell, 132(6): 929–934PubMedPubMedCentralCrossRefGoogle Scholar
  56. Langer-Safer P R, Levine M, Ward D C (1982). Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA, 79(14): 4381–4385PubMedPubMedCentralCrossRefGoogle Scholar
  57. Larson D R, Zenklusen D, Wu B, Chao J A, Singer R H (2011). Realtime observation of transcription initiation and elongation on an endogenous yeast gene. Science, 332(6028): 475–478PubMedPubMedCentralCrossRefGoogle Scholar
  58. Levi V, Ruan Q, Plutz M, Belmont A S, Gratton E (2005). Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys J, 89(6): 4275–4285PubMedPubMedCentralCrossRefGoogle Scholar
  59. Levine M (2014). The contraction of time and space in remote chromosomal interactions. Cell, 158(2): 243–244PubMedPubMedCentralCrossRefGoogle Scholar
  60. Levsky J M, Singer R H (2003). Fluorescence in situ hybridization: past, present and future. J Cell Sci, 116(Pt 14): 2833–2838PubMedCrossRefGoogle Scholar
  61. Li D, Shao L, Chen B C, Zhang X, Zhang M, Moses B, Milkie D E, Beach J R, Hammer J A 3rd, Pasham M, Kirchhausen T, Baird M A, Davidson M W, Xu P, Betzig E (2015). ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349(6251): aab3500Google Scholar
  62. Li J, Zhang B B, Ren Y G, Gu S Y, Xiang Y H, Du J L (2015). Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Res, 25(5): 634–637PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lindhout B I, Fransz P, Tessadori F, Meckel T, Hooykaas P J, van der Zaal B J (2007). Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res, 35(16): e107PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lottersberger F, Karssemeijer R A, Dimitrova N, de Lange T (2015). 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA Repair. Cell, 163(4): 880–893PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lucas J S, Zhang Y, Dudko O K, Murre C (2014). 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell, 158(2): 339–352PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ma H, Naseri A, Reyes-Gutierrez P, Wolfe S A, Zhang S, Pederson T (2015). Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci USA, 112(10): 3002–3007PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ma H, Reyes-Gutierrez P, Pederson T (2013). Visualization of repetitive DNA sequences in human chromosomes with transcription activatorlike effectors. Proc Natl Acad Sci USA, 110(52): 21048–21053PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ma H, Tu L C, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016). Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol, 34(5): 528–530PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121): 823–826PubMedPubMedCentralCrossRefGoogle Scholar
  70. Marshall W F, Straight A, Marko J F, Swedlow J, Dernburg A, Belmont A, Murray A W, Agard D A, Sedat J W (1997). Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol, 7(12): 930–939PubMedCrossRefGoogle Scholar
  71. Masui O, Bonnet I, Le Baccon P, Brito I, Pollex T, Murphy N, Hupé P, Barillot E, Belmont A S, Heard E (2011). Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation. Cell, 145(3): 447–458PubMedPubMedCentralCrossRefGoogle Scholar
  72. Meaburn K J, Misteli T (2007). Cell biology: chromosome territories. Nature, 445(7126): 379–781PubMedCrossRefGoogle Scholar
  73. Meldi L, Brickner J H (2011). Compartmentalization of the nucleus. Trends Cell Biol, 21(12): 701–708PubMedPubMedCentralCrossRefGoogle Scholar
  74. Miyanari Y (2014). TAL effector-mediated genome visualization (TGV). Methods, 69(2): 198–204PubMedCrossRefGoogle Scholar
  75. Miyanari Y, Ziegler-Birling C, Torres-Padilla M E (2013). Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol, 20(11): 1321–1324PubMedCrossRefGoogle Scholar
  76. Nelles D A, Fang MY, O’Connell MR, Xu J L, Markmiller S J, Doudna J A, Yeo G W (2016). Programmable RNA tracking in live cells with CRISPR/Cas9. Cell, 165(2): 488–496PubMedPubMedCentralCrossRefGoogle Scholar
  77. Noordermeer D, Leleu M, Splinter E, Rougemont J, De Laat W, Duboule D (2011). The dynamic architecture of Hox gene clusters. Science, 334(6053): 222–225PubMedCrossRefGoogle Scholar
  78. Nora E P, Lajoie B R, Schulz E G, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum N L, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E (2012). Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 485(7398): 381–385PubMedPubMedCentralCrossRefGoogle Scholar
  79. O’Connell M R, Oakes B L, Sternberg S H, East-Seletsky A, Kaplan M, Doudna J A (2014). Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature, 516(7530): 263–266PubMedPubMedCentralCrossRefGoogle Scholar
  80. Ochiai H, Sugawara T, Yamamoto T (2015). Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res, 43(19): e127PubMedPubMedCentralCrossRefGoogle Scholar
  81. Pederson T (2014). Repeated TALEs: visualizing DNA sequence localization and chromosome dynamics in live cells. Nucleus, 5(1): 28–31PubMedPubMedCentralCrossRefGoogle Scholar
  82. Pope B D, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera D L, Wang Y, Hansen R S, Canfield T K, Thurman R E, Cheng Y, Gülsoy G, Dennis J H, Snyder M P, Stamatoyannopoulos J A, Taylor J, Hardison R C, Kahveci T, Ren B, Gilbert D M (2014). Topologically associating domains are stable units of replication-timing regulation. Nature, 515(7527): 402–405PubMedPubMedCentralCrossRefGoogle Scholar
  83. Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M (2017). Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun, 8: 14725PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ran F A, Cong L, Yan W X, Scott D A, Gootenberg J S, Kriz A J, Zetsche B, Shalem O, Wu X, Makarova K S, Koonin E V, Sharp P A, Zhang F (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520(7546): 186–191PubMedPubMedCentralCrossRefGoogle Scholar
  85. Reddy K L, Zullo J M, Bertolino E, Singh H (2008). Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature, 452(7184): 243–247PubMedCrossRefGoogle Scholar
  86. Ren R, Deng L, Xue Y, Suzuki K, Zhang W, Yu Y, Wu J, Sun L, Gong X, Luan H, Yang F, Ju Z, Ren X, Wang S, Tang H, Geng L, Zhang W, Li J, Qiao J, Xu T, Qu J, Liu G H (2017). Visualization of agingassociated chromatin alterations with an engineered TALE system. Cell Res, 27(4): 483–504PubMedPubMedCentralCrossRefGoogle Scholar
  87. Ricci M A, Manzo C, García-Parajo M F, Lakadamyali M, Cosma M P (2015). Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell, 160(6): 1145–1158PubMedCrossRefGoogle Scholar
  88. Ried T, Schröck E, Ning Y, Wienberg J (1998). Chromosome painting: a useful art. Hum Mol Genet, 7(10): 1619–1626PubMedCrossRefGoogle Scholar
  89. Robinett C C, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont A S (1996). In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol, 135(6 Pt 2): 1685–1700PubMedCrossRefGoogle Scholar
  90. Roukos V, Voss T C, Schmidt C K, Lee S, Wangsa D, Misteli T (2013). Spatial dynamics of chromosome translocations in living cells. Science, 341(6146): 660–664PubMedCrossRefGoogle Scholar
  91. Saad H, Gallardo F, Dalvai M, Tanguy-le-Gac N, Lane D, Bystricky K (2014). DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells. PLoS Genet, 10(3): e1004187PubMedPubMedCentralCrossRefGoogle Scholar
  92. Salic A, Mitchison T J (2008). A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci USA, 105(7): 2415–2420PubMedPubMedCentralCrossRefGoogle Scholar
  93. Schermelleh L, Carlton P M, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso M C, Agard D A, Gustafsson M G, Leonhardt H, Sedat J W (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320(5881): 1332–1336PubMedPubMedCentralCrossRefGoogle Scholar
  94. Segal D J, Dreier B, Beerli R R, Barbas C F 3rd (1999). Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci USA, 96(6): 2758–2763PubMedPubMedCentralCrossRefGoogle Scholar
  95. Shachar S, Voss T C, Pegoraro G, Sciascia N, Misteli T (2015). Identification of Gene Positioning Factors Using High-Throughput Imaging Mapping. Cell, 162(4): 911–923PubMedPubMedCentralCrossRefGoogle Scholar
  96. Shalem O, Sanjana N E, Zhang F (2015). High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet, 16(5): 299–311PubMedPubMedCentralCrossRefGoogle Scholar
  97. Shao S, et al (2017). Multiplexed sgRNA Expression Allows Versatile Single Non-repetitive DNA Labeling and Endogenous Gene Regulation. bioRxivGoogle Scholar
  98. Shao S, Zhang W, Hu H, Xue B, Qin J, Sun C, Sun Y, Wei W, Sun Y (2016). Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res, 44(9): e86PubMedPubMedCentralCrossRefGoogle Scholar
  99. Shechner D M, Hacisuleyman E, Younger S T, Rinn J L (2015). Multiplexable, locus-specific targeting of long RNAs with CRISPRDisplay. Nat Methods, 12(7): 664–670PubMedPubMedCentralCrossRefGoogle Scholar
  100. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 38(11): 1348–1354PubMedCrossRefGoogle Scholar
  101. Smeets D, Markaki Y, Schmid V J, Kraus F, Tattermusch A, Cerase A, Sterr M, Fiedler S, Demmerle J, Popken J, Leonhardt H, Brockdorff N, Cremer T, Schermelleh L, Cremer M (2014). Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin, 7(1): 8PubMedPubMedCentralCrossRefGoogle Scholar
  102. Solovei I, Cremer M (2010). 3D-FISH on cultured cells combined with immunostaining. Methods Mol Biol, 659: 117–126PubMedCrossRefGoogle Scholar
  103. Soutoglou E, Dorn J F, Sengupta K, Jasin M, Nussenzweig A, Ried T, Danuser G, Misteli T (2007). Positional stability of single doublestrand breaks in mammalian cells. Nat Cell Biol, 9(6): 675–682PubMedPubMedCentralCrossRefGoogle Scholar
  104. Strack R L, Disney M D, Jaffrey S R (2013). A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat Methods, 10(12): 1219–1224PubMedPubMedCentralCrossRefGoogle Scholar
  105. Tagarro I, Fernández-Peralta A M, González-Aguilera J J (1994). Chromosomal localization of human satellites 2 and 3 by a FISH method using oligonucleotides as probes. Hum Genet, 93(4): 383–388PubMedCrossRefGoogle Scholar
  106. Takei Y, Shah S, Harvey S, Qi L S, Cai L (2017). Multiplexed dynamic imaging of genomic loci in single cells by combined CRISPR imaging and DNA sequential FISH. Biophy J, 112(9): 1773–1776CrossRefGoogle Scholar
  107. Tanenbaum ME, Gilbert L A, Qi L S, Weissman J S, Vale R D (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 159(3): 635–646PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tang Z, Luo O J, Li X, Zheng M, Zhu J J, Szalaj P, Trzaskoma P, Magalska A, Wlodarczyk J, Ruszczycki B, Michalski P, Piecuch E, Wang P, Wang D, Tian S Z, Penrad-Mobayed M, Sachs L M, Ruan X, Wei C L, Liu E T, Wilczynski G M, Plewczynski D, Li G, Ruan Y (2015). CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription. Cell, 163(7): 1611–1627PubMedPubMedCentralCrossRefGoogle Scholar
  109. Thanisch K, Schneider K, Morbitzer R, Solovei I, Lahaye T, Bultmann S, Leonhardt H (2014). Targeting and tracing of specific DNA sequences with dTALEs in living cells. Nucleic Acids Res, 42(6): e38PubMedCrossRefGoogle Scholar
  110. Therizols P, Illingworth R S, Courilleau C, Boyle S, Wood A J, Bickmore W A (2014). Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science, 346(6214): 1238–1242PubMedCrossRefGoogle Scholar
  111. Tsukamoto T, Hashiguchi N, Janicki S M, Tumbar T, Belmont A S, Spector D L (2000). Visualization of gene activity in living cells. Nat Cell Biol, 2(12): 871–878PubMedCrossRefGoogle Scholar
  112. Verdaasdonk J S, Vasquez P A, Barry R M, Barry T, Goodwin S, Forest M G, Bloom K (2013). Centromere tethering confines chromosome domains. Mol Cell, 52(6): 819–831PubMedCrossRefGoogle Scholar
  113. Viollier P H, Thanbichler M, McGrath P T, West L, Meewan M, McAdams H H, Shapiro L (2004). Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci USA, 101(25): 9257–9262PubMedPubMedCentralCrossRefGoogle Scholar
  114. Vogel M J, Peric-Hupkes D, van Steensel B (2007). Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat Protoc, 2(6): 1467–1478PubMedCrossRefGoogle Scholar
  115. Wäldchen S, Lehmann J, Klein T, van de Linde S, Sauer M (2015). Light-induced cell damage in live-cell super-resolution microscopy. Sci Rep, 5: 15348PubMedPubMedCentralCrossRefGoogle Scholar
  116. Waldman F M, Chew K, Ljung B M, Goodson W, Hom J, Duarte L A, Smith H S, Mayall B (1991). A comparison between bromodeoxyuridine and 3H thymidine labeling in human breast tumors. Mod Pathol, 4(6): 718–722PubMedGoogle Scholar
  117. Wan H, Feng C, Teng F, Yang S, Hu B, Niu Y, Xiang A P, Fang W, Ji W, Li W, Zhao X, Zhou Q (2015). One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res, 25(2): 258–261PubMedCrossRefGoogle Scholar
  118. Wang S, Su J H, Beliveau B J, Bintu B, Moffitt J R, Wu C T, Zhuang X (2016). Spatial organization of chromatin domains and compartments in single chromosomes. Science, 353(6299): 598–602PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wang W, Li G W, Chen C, Xie X S, Zhuang X (2011). Chromosome organization by a nucleoid-associated protein in live bacteria. Science, 333(6048): 1445–1449PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wijchers P J, Krijger P H, Geeven G, Zhu Y, Denker A, Verstegen M J, Valdes-Quezada C, Vermeulen C, Janssen M, Teunissen H, Anink- Groenen L C, Verschure P J, de Laat W (2016). Cause and Consequence of Tethering a SubTAD to Different Nuclear Compartments. Mol Cell, 61(3): 461–473PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, Wang Y, Xie Z, Bai M, Yin Q, Liang D, Tang W, Liao J, Zhou C, Liu W, Zhu P, Guo H, Pan H, Wu C, Shi H, Wu L, Tang F, Li J (2015). Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res, 25(1): 67–79PubMedCrossRefGoogle Scholar
  122. Zalatan J G, Lee ME, Almeida R, Gilbert L A, Whitehead E H, La Russa M, Tsai J C, Weissman J S, Dueber J E, Qi L S, Lim W A (2015). Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 160(1-2): 339–350PubMedCrossRefGoogle Scholar
  123. Zhou Y, Wang P, Tian F, Gao G, Huang L, Wei W, Xie X S (2017). Painting a specific chromosome with CRISPR/Cas9 for live-cell imaging. Cell Res, 27(2): 298–301PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zuleger N, Boyle S, Kelly D A, de las Heras J I, Lazou V, Korfali N, Batrakou D G, Randles K N, Morris G E, Harrison D J, Bickmore W A, Schirmer E C (2013). Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery. Genome Biol, 14(2): R14PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Shipeng Shao
    • 1
  • Lei Chang
    • 1
  • Yingping Hou
    • 1
  • Yujie Sun
    • 1
  1. 1.State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life SciencesPeking UniversityBeijingChina

Personalised recommendations