Frontiers in Biology

, Volume 10, Issue 4, pp 333–357 | Cite as

Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD+ homeostasis and contributes to longevity

  • Felicia Tsang
  • Su-Ju LinEmail author


Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis.


nutrient sensing NAD+ homeostasis yeast longevity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Sater F, Jean C, Merhi A, Vissers S, André B (2011). Amino acid signaling in yeast: activation of Ssy5 protease is associated with its phosphorylation-induced ubiquitylation. J Biol Chem, 286(14): 12006–12015PubMedCentralPubMedGoogle Scholar
  2. AbdelRaheim S R, Cartwright J L, Gasmi L, McLennan A G (2001). The NADH diphosphatase encoded by the Saccharomyces cerevisiae NPY1 nudix hydrolase gene is located in peroxisomes. Arch Biochem Biophys, 388(1): 18–24PubMedGoogle Scholar
  3. Andersen M P, Nelson Z W, Hetrick E D, Gottschling D E (2008). A genetic screen for increased loss of heterozygosity in Saccharomyces cerevisiae. Genetics, 179(3): 1179–1195PubMedCentralPubMedGoogle Scholar
  4. Anderson R M, Bitterman K J, Wood J G, Medvedik O, Cohen H, Lin S S, Manchester J K, Gordon J I, Sinclair D A (2002). Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem, 277(21): 18881–18890PubMedGoogle Scholar
  5. Anderson R M, Bitterman K J, Wood J G, Medvedik O, Sinclair D A (2003). Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature, 423(6936): 181–185PubMedGoogle Scholar
  6. Andréasson C, Heessen S, Ljungdahl P O (2006). Regulation of transcription factor latency by receptor-activated proteolysis. Genes Dev, 20(12): 1563–1568PubMedCentralPubMedGoogle Scholar
  7. Ashrafi K, Lin S S, Manchester J K, Gordon J I (2000). Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev, 14(15): 1872–1885PubMedCentralPubMedGoogle Scholar
  8. Auesukaree C, Homma T, Tochio H, Shirakawa M, Kaneko Y, Harashima S (2004). Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae. J Biol Chem, 279(17): 17289–17294PubMedGoogle Scholar
  9. Auesukaree C, Tochio H, Shirakawa M, Kaneko Y, Harashima S (2005). Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polypho-sphate accumulation in Saccharomyces cerevisiae. J Biol Chem, 280 (26): 25127–25133PubMedGoogle Scholar
  10. Bakker B M, Overkamp K M, Kötter P, Luttik M A, Pronk J T, van Dijken J P, Pronk J T, and the van Maris AJ, and the van Dijken J P (2001). Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev, 25(1): 15–37PubMedGoogle Scholar
  11. Baldwin S A, Yao S Y, Hyde R J, Ng A M, Foppolo S, Barnes K, Ritzel M W, Cass C E, Young J D (2005). Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J Biol Chem, 280(16): 15880–15887PubMedGoogle Scholar
  12. Barros M H, Bandy B, Tahara E B, Kowaltowski A J (2004). Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem, 279(48): 49883–49888PubMedGoogle Scholar
  13. Beck T, Hall M N (1999). The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature, 402 (6762). 689–692PubMedGoogle Scholar
  14. Bedalov A, Hirao M, Posakony J, Nelson M, Simon J A (2003). NAD+- dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae. Mol Cell Biol, 23(19): 7044–7054PubMedCentralPubMedGoogle Scholar
  15. Belenky P, Racette F G, Bogan K L, McClure J M, Smith J S, Brenner C (2007). Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell, 129 (3): 473–484PubMedGoogle Scholar
  16. Belenky P A, Moga T G, Brenner C (2008). Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1. J Biol Chem, 283(13): 8075–8079PubMedGoogle Scholar
  17. Bender D A (1983). Biochemistry of tryptophan in health and disease. Mol Aspects Med, 6(2): 101–197PubMedGoogle Scholar
  18. Bieganowski P, Brenner C (2004). Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell, 117(4): 495–502PubMedGoogle Scholar
  19. Bieganowski P, Pace H C, Brenner C (2003). Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase. J Biol Chem, 278(35): 33049–33055PubMedGoogle Scholar
  20. Bilinski T, Bartosz G (2006). Hypothesis: cell volume limits cell divisions. Acta Biochim Pol, 53(4): 833–835PubMedGoogle Scholar
  21. Bilinski T, Zadrag-Tecza R, Bartosz G (2012). Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast. FEMS Yeast Res, 12(1): 97–101PubMedGoogle Scholar
  22. Binda M, Péli-Gulli M P, Bonfils G, Panchaud N, Urban J, Sturgill TW, Loewith R, De Virgilio C (2009). The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell, 35(5): 563–573PubMedGoogle Scholar
  23. Bitterman K J, Anderson R M, Cohen H Y, Latorre-Esteves M, Sinclair D A (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem, 277(47): 45099–45107PubMedGoogle Scholar
  24. Blinder D, Coschigano P W, Magasanik B (1996). Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae. J Bacteriol, 178(15): 4734–4736PubMedCentralPubMedGoogle Scholar
  25. Bogan K L, Brenner C (2008). Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr, 28(1): 115–130PubMedGoogle Scholar
  26. Bogan K L, Evans C, Belenky P, Song P, Burant C F, Kennedy R, Brenner C (2009). Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide [corrected] 5'-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside. J Biol Chem, 284(50): 34861–34869PubMedCentralPubMedGoogle Scholar
  27. Bonawitz N D, Chatenay-Lapointe M, Pan Y, Shadel G S (2007). Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab, 5(4): 265–277PubMedCentralPubMedGoogle Scholar
  28. Boswell-Casteel R C, Johnson J M, Duggan K D, Roe-Žurž Z, Schmitz H, Burleson C, Hays F A (2014). FUN26 (function unknown now 26) protein from Saccharomyces cerevisiae is a broad selectivity, high affinity, nucleoside and nucleobase transporter. J Biol Chem, 289 (35): 24440–24451PubMedGoogle Scholar
  29. Brachmann C B, Sherman J M, Devine S E, Cameron E E, Pillus L, Boeke J D (1995). The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev, 9(23): 2888–2902PubMedGoogle Scholar
  30. Broach J R (2012). Nutritional control of growth and development in yeast. Genetics, 192(1): 73–105PubMedCentralPubMedGoogle Scholar
  31. Bun-Ya M, Nishimura M, Harashima S, Oshima Y (1991). The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol, 11(6): 3229–3238PubMedCentralPubMedGoogle Scholar
  32. Burtner C R, Murakami C J, Kennedy B K, Kaeberlein M (2009). A molecular mechanism of chronological aging in yeast. Cell Cycle, 8 (8): 1256–1270PubMedCentralPubMedGoogle Scholar
  33. Carroll A S, Bishop A C, DeRisi J L, Shokat K M, O’Shea E K (2001). Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc Natl Acad Sci USA, 98(22): 12578–12583PubMedCentralPubMedGoogle Scholar
  34. Casamayor A, Torrance P D, Kobayashi T, Thorner J, Alessi D R (1999). Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr Biol, 9(4): 186–197PubMedGoogle Scholar
  35. Celenza J L, Carlson M (1986). A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science, 233 (4769). 1175–1180PubMedGoogle Scholar
  36. Celic I, Masumoto H, Griffith W P, Meluh P, Cotter R J, Boeke J D, Verreault A (2006). The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol, 16(13): 1280–1289PubMedGoogle Scholar
  37. Chandrashekarappa D G, McCartney R R, Schmidt M C (2013). Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation. J Biol Chem, 288(1): 89–98PubMedCentralPubMedGoogle Scholar
  38. Cheng W, Roth J (1995). Isolation of NAD cycle mutants defective in nicotinamide mononucleotide deamidase in Salmonella typhimurium. J Bacteriol, 177(23): 6711–6717PubMedCentralPubMedGoogle Scholar
  39. Cherkasova V A, Hinnebusch A G (2003). Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev, 17(7): 859–872PubMedCentralPubMedGoogle Scholar
  40. Chodosh L A, Olesen J, Hahn S, Baldwin A S, Guarente L, Sharp P A (1988). A yeast and a human CCAAT-binding protein have heterologous subunits that are functionally interchangeable. Cell, 53(1): 25–35PubMedGoogle Scholar
  41. Choi KM, Kwon Y Y, Lee C K (2015). Disruption of Snf3/Rgt2 glucose sensors decreases lifespan and caloric restriction effectiveness through Mth1/Std1 by adjusting mitochondrial efficiency in yeast. FEBS Lett, 589(3): 349–357PubMedGoogle Scholar
  42. Clapper D L, Walseth T F, Dargie P J, Lee H C (1987). Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem, 262 (20): 9561–9568PubMedGoogle Scholar
  43. Conrad M, Schothorst J, Kankipati H N, Van Zeebroeck G, Rubio- Texeira M, Thevelein J M (2014). Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev, 38(2): 254–299PubMedCentralPubMedGoogle Scholar
  44. De Wever V, Reiter W, Ballarini A, Ammerer G, Brocard C (2005). A dual role for PP1 in shaping the Msn2-dependent transcriptional response to glucose starvation. EMBO J, 24(23): 4115–4123PubMedCentralPubMedGoogle Scholar
  45. Delaney J R, Ahmed U, Chou A, Sim S, Carr D, Murakami C J, Schleit J, Sutphin G L, An E H, Castanza A, Fletcher M, Higgins S, Jelic M, Klum S, Muller B, Peng Z J, Rai D, Ros V, Singh M, Wende H V, Kennedy B K, Kaeberlein M (2013). Stress profiling of longevity mutants identifies Afg3 as a mitochondrial determinant of cytoplasmic mRNA translation and aging. Aging Cell, 12(1): 156–166PubMedCentralPubMedGoogle Scholar
  46. DeRisi J L, Iyer V R, Brown P O (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278 (5338). 680–686PubMedGoogle Scholar
  47. Dever T E, Hinnebusch A G (2005). GCN2 whets the appetite for amino acids. Mol Cell, 18(2): 141–142PubMedGoogle Scholar
  48. Dilova I, Aronova S, Chen J C, Powers T (2004). Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1.Rtg3p-dependent target genes. J Biol Chem, 279(45): 46527–46535PubMedGoogle Scholar
  49. Dilova I, Easlon E, Lin S J (2007). Calorie restriction and the nutrient sensing signaling pathways. Cell Mol Life Sci, 64(6): 752–767PubMedGoogle Scholar
  50. Dohlman H G, Thorner J W (2001). Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem, 70(1): 703–754PubMedGoogle Scholar
  51. Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch A G (2000). Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell, 6(2): 269–279PubMedGoogle Scholar
  52. Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C (2005). The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell, 19(1): 15–26PubMedGoogle Scholar
  53. Easlon E, Tsang F, Dilova I, Wang C, Lu S P, Skinner C, Lin S J (2007). The dihydrolipoamide acetyltransferase is a novel metabolic longevity factor and is required for calorie restriction-mediated life span extension. J Biol Chem, 282(9): 6161–6171PubMedCentralPubMedGoogle Scholar
  54. Easlon E, Tsang F, Skinner C, Wang C, Lin S J (2008). The malateaspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev, 22(7): 931–944PubMedCentralPubMedGoogle Scholar
  55. Efeyan A, Zoncu R, Sabatini D M (2012). Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med, 18(9): 524–533PubMedCentralPubMedGoogle Scholar
  56. Emanuelli M, Amici A, Carnevali F, Pierella F, Raffaelli N, Magni G (2003). Identification and characterization of a second NMN adenylyltransferase gene in Saccharomyces cerevisiae. Protein Expr Purif, 27(2): 357–364PubMedGoogle Scholar
  57. Emanuelli M, Carnevali F, Lorenzi M, Raffaelli N, Amici A, Ruggieri S, Magni G (1999). Identification and characterization of YLR328W, the Saccharomyces cerevisiae structural gene encoding NMN adenylyltransferase. Expression and characterization of the recombinant enzyme. FEBS Lett, 455(1–2): 13–17PubMedGoogle Scholar
  58. Endo Y, Obata T, Murata D, Ito M, Sakamoto K, Fukushima M, Yamasaki Y, Yamada Y, Natsume N, Sasaki T (2007). Cellular localization and functional characterization of the equilibrative nucleoside transporters of antitumor nucleosides. Cancer Sci, 98 (10): 1633–1637PubMedGoogle Scholar
  59. Erjavec N, Bayot A, Gareil M, Camougrand N, Nystrom T, Friguet B, Bulteau A L (2013). Deletion of the mitochondrial Pim1/Lon protease in yeast results in accelerated aging and impairment of the proteasome. Free Radic Biol Med, 56: 9–16PubMedGoogle Scholar
  60. Erjavec N, Cvijovic M, Klipp E, Nyström T (2008). Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proc Natl Acad Sci USA, 105(48): 18764–18769PubMedCentralPubMedGoogle Scholar
  61. Erjavec N, Larsson L, Grantham J, Nyström T (2007). Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev, 21(19): 2410–2421PubMedCentralPubMedGoogle Scholar
  62. Erjavec N, Nyström T (2007). Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 104(26): 10877–10881PubMedCentralPubMedGoogle Scholar
  63. Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T (1999). Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science, 283(5404): 981–985PubMedGoogle Scholar
  64. Evans C, Bogan K L, Song P, Burant C F, Kennedy R T, Brenner C (2010). NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity. BMC Chem Biol, 10(1): 2PubMedCentralPubMedGoogle Scholar
  65. Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo V D (2005). Sir2 blocks extreme life-span extension. Cell, 123 (4): 655–667PubMedGoogle Scholar
  66. Fabrizio P, Hoon S, Shamalnasab M, Galbani A, Wei M, Giaever G, Nislow C, Longo V D (2010). Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet, 6(7): e1001024Google Scholar
  67. Fabrizio P, Longo V D (2003). The chronological life span of Saccharomyces cerevisiae. Aging Cell, 2(2): 73–81PubMedGoogle Scholar
  68. Fabrizio P, Longo V D (2007). The chronological life span of Saccharomyces cerevisiae. Methods Mol Biol, 371: 89–95PubMedGoogle Scholar
  69. Fabrizio P, Pozza F, Pletcher S D, Gendron C M, Longo V D (2001). Regulation of longevity and stress resistance by Sch9 in yeast. Science, 292(5515): 288–290PubMedGoogle Scholar
  70. Flick K M, Spielewoy N, Kalashnikova T I, Guaderrama M, Zhu Q, Chang H C, Wittenberg C (2003). Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell, 14(8): 3230–3241PubMedCentralPubMedGoogle Scholar
  71. Foresti O, Rodriguez-Vaello V, Funaya C, Carvalho P (2014). Quality control of inner nuclear membrane proteins by the Asi complex. Science, 346(6210): 751–755PubMedGoogle Scholar
  72. Forsburg S L, Guarente L (1989). Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev, 3(8): 1166–1178PubMedGoogle Scholar
  73. Frye R A (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun, 273 (2): 793–798PubMedGoogle Scholar
  74. Gallo C M, Smith D L Jr, Smith J S (2004). Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity. Mol Cell Biol, 24(3): 1301–1312PubMedCentralPubMedGoogle Scholar
  75. Gancedo J M (1998). Yeast carbon catabolite repression. Microbiol Mol Biol Rev, 62(2): 334–361PubMedCentralPubMedGoogle Scholar
  76. Garavaglia S, D’Angelo I, Emanuelli M, Carnevali F, Pierella F, Magni G, Rizzi M (2002). Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. J Biol Chem, 277(10): 8524–8530PubMedGoogle Scholar
  77. Gauthier S, Coulpier F, Jourdren L, Merle M, Beck S, Konrad M, Daignan-Fornier B, Pinson B (2008). Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations. Mol Microbiol, 68(6): 1583–1594PubMedGoogle Scholar
  78. Ghislain M, Talla E, François J M (2002). Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene, PNC1. Yeast, 19(3): 215–224PubMedGoogle Scholar
  79. Giots F, Donaton M C, Thevelein J M (2003). Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol, 47(4): 1163–1181PubMedGoogle Scholar
  80. Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B (2007). Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol, 27(8): 3065–3086PubMedCentralPubMedGoogle Scholar
  81. Görner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, Schüller C (1998). Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev, 12(4): 586–597PubMedCentralPubMedGoogle Scholar
  82. Görner W, Durchschlag E, Wolf J, Brown E L, Ammerer G, Ruis H, Schüller C (2002). Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J, 21(1–2): 135–144PubMedCentralPubMedGoogle Scholar
  83. Graeff R, Liu Q, Kriksunov I A, Hao Q, Lee H C (2006). Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine nicotinic acid adenine dinucleotide phosphate (NAADP) synthesis and hydrolysis activities. J Biol Chem, 281(39): 28951–28957PubMedGoogle Scholar
  84. Grose J H, Bergthorsson U, Roth J R (2005). Regulation of NAD synthesis by the trifunctional NadR protein of Salmonella enterica. J Bacteriol, 187(8): 2774–2782PubMedCentralPubMedGoogle Scholar
  85. Guarente L (2013). Introduction: sirtuins in aging and diseases. Methods Mol Biol, 1077: 3–10PubMedGoogle Scholar
  86. Guse A H, Lee H C (2008). NAADP: a universal Ca2+ trigger. Sci Signal, 1(44): re10Google Scholar
  87. Hachinohe M, Hanaoka F, Masumoto H (2011). Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae. Genes Cells, 16(4): 467–477PubMedGoogle Scholar
  88. Hachinohe M, Yamane M, Akazawa D, Ohsawa K, Ohno M, Terashita Y, Masumoto H (2013). A reduction in age-enhanced gluconeogenesis extends lifespan. PLoS ONE, 8(1): e54011Google Scholar
  89. Hahn J S, Thiele D J (2004). Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem, 279(7): 5169–5176PubMedGoogle Scholar
  90. Hahn S, Guarente L (1988). Yeast HAP2 and HAP3: transcriptional activators in a heteromeric complex. Science, 240(4850): 317–321PubMedGoogle Scholar
  91. Hahn S, Young E T (2011). Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics, 189 (3): 705–736PubMedCentralPubMedGoogle Scholar
  92. Haigis M C, Mostoslavsky R, Haigis K M, Fahie K, Christodoulou D C, Murphy A J, Valenzuela D M, Yancopoulos G D, Karow M, Blander G, Wolberger C, Prolla T A, Weindruch R, Alt F W, Guarente L (2006). SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell, 126(5): 941–954PubMedGoogle Scholar
  93. Halme A, Bumgarner S, Styles C, Fink G R (2004). Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell, 116(3): 405–415PubMedGoogle Scholar
  94. Hardie D G (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol, 8(10): 774–785PubMedGoogle Scholar
  95. Hecht A, Strahl-Bolsinger S, Grunstein M (1996). Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature, 383(6595): 92–96PubMedGoogle Scholar
  96. Hernández H, Aranda C, López G, Riego L, González A (2011). Hap2-3- 5-Gln3 determine transcriptional activation of GDH1 and ASN1 under repressive nitrogen conditions in the yeast Saccharomyces cerevisiae. Microbiology, 157(Pt 3): 879–889PubMedGoogle Scholar
  97. Hinnebusch A G (2005). Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol, 59(1): 407–450PubMedGoogle Scholar
  98. Hinnebusch A G, Natarajan K (2002). Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell, 1(1): 22–32PubMedCentralPubMedGoogle Scholar
  99. Hong S P, Leiper F C, Woods A, Carling D, Carlson M (2003). Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci USA, 100(15): 8839–8843PubMedCentralPubMedGoogle Scholar
  100. Houtkooper R H, Cantó C, Wanders R J, Auwerx J (2010). The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev, 31(2): 194–223PubMedCentralPubMedGoogle Scholar
  101. Hughes A L, Gottschling D E (2012). An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature, 492 (7428). 261–265PubMedCentralPubMedGoogle Scholar
  102. Imai S, Armstrong C M, Kaeberlein M, Guarente L (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 403(6771): 795–800PubMedGoogle Scholar
  103. Imai S I, Guarente L (2014). NAD and sirtuins in aging and disease. Trends Cell Biol.Google Scholar
  104. Ivy JM, Klar A J, Hicks J B (1986). Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol, 6: 688–702PubMedCentralPubMedGoogle Scholar
  105. Jacinto E, Lorberg A (2008). TOR regulation of AGC kinases in yeast and mammals. Biochem J, 410(1): 19–37PubMedGoogle Scholar
  106. Jazwinski S M (1990). An experimental system for the molecular analysis of the aging process: the budding yeast Saccharomyces cerevisiae. J Gerontol, 45(3): B68–B74PubMedGoogle Scholar
  107. Jazwinski SM(2000). Aging and longevity genes. Acta Biochim Pol, 47 (2): 269–279Google Scholar
  108. Jia S H, Li Y, Parodo J, Kapus A, Fan L, Rotstein O D, Marshall J C (2004). Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest, 113(9): 1318–1327PubMedCentralPubMedGoogle Scholar
  109. Jiang J C, Jaruga E, Repnevskaya M V, Jazwinski S M (2000). An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J, 14(14): 2135–2137PubMedGoogle Scholar
  110. Jouandot D, Roy A, Kim J H (2011). Functional dissection of the glucose signaling pathways that regulate the yeast glucose transporter gene (HXT) repressor Rgt1. J Cell Biochem, 112(11): 3268–3275PubMedCentralPubMedGoogle Scholar
  111. Kaeberlein M, Andalis A A, Fink G R, Guarente L (2002). High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol, 22(22): 8056–8066PubMedCentralPubMedGoogle Scholar
  112. Kaeberlein M, Hu D, Kerr E O, Tsuchiya M, Westman E A, Dang N, Fields S, Kennedy B K (2005a). Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet, 1(5): e69Google Scholar
  113. Kaeberlein M, Kirkland K T, Fields S, Kennedy B K (2004). Sir2- independent life span extension by calorie restriction in yeast. PLoS Biol, 2(9): e296Google Scholar
  114. Kaeberlein M, Powers RW, Steffen K K, Westman E A, Hu D, Dang N, Kerr E O, Kirkland K T, Fields S, Kennedy B K (2005b). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science, 310(5751): 1193–1196PubMedGoogle Scholar
  115. Kamada Y, Fujioka Y, Suzuki N N, Inagaki F, Wullschleger S, Loewith R, Hall M N, Ohsumi Y (2005). Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol, 25 (16): 7239–7248PubMedCentralPubMedGoogle Scholar
  116. Kang H J, Jeong S J, Kim K N, Baek I J, Chang M, Kang CM, Park Y S, Yun C W (2014). A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae. Biochem J, 457(3): 391–400PubMedGoogle Scholar
  117. Kato M, Lin S J (2014a). Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair (Amst), 23: 49–58Google Scholar
  118. Kato M, Lin S J (2014b). YCL047C/POF1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae. J Biol Chem, 289(22): 15577–15587PubMedCentralPubMedGoogle Scholar
  119. Keith C T, Schreiber S L (1995). PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science, 270(5233): 50–51PubMedGoogle Scholar
  120. Kenyon C (2001). A conserved regulatory system for aging. Cell, 105 (2): 165–168PubMedGoogle Scholar
  121. Kim J H, Brachet V, Moriya H, Johnston M (2006). Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae. Eukaryot Cell, 5 (1): 167–173PubMedCentralPubMedGoogle Scholar
  122. Kim J H, Johnston M (2006). Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae. J Biol Chem, 281(36): 26144–26149PubMedGoogle Scholar
  123. Kornitzer D, Raboy B, Kulka R G, Fink G R (1994). Regulated degradation of the transcription factor Gcn4. EMBO J, 13(24): 6021–6030PubMedCentralPubMedGoogle Scholar
  124. Kruegel U, Robison B, Dange T, Kahlert G, Delaney J R, Kotireddy S, Tsuchiya M, Tsuchiyama S, Murakami C J, Schleit J, Sutphin G, Carr D, Tar K, Dittmar G, Kaeberlein M, Kennedy B K, Schmidt M (2011). Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet, 7(9): e1002253Google Scholar
  125. Lamming DW, Latorre-Esteves M, Medvedik O, Wong S N, Tsang F A, Wang C, Lin S J, Sinclair D A (2005). HST2 mediates SIR2- independent life-span extension by calorie restriction. Science, 309 (5742). 1861–1864PubMedGoogle Scholar
  126. Lamming D W, Wood J G, Sinclair D A (2004). Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol, 53(4): 1003–1009PubMedGoogle Scholar
  127. Landry J, Sutton A, Tafrov S T, Heller R C, Stebbins J, Pillus L, Sternglanz R (2000). The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA, 97 (11): 5807–5811PubMedCentralPubMedGoogle Scholar
  128. Lascaris R, Bussemaker H J, Boorsma A, Piper M, van der Spek H, Grivell L, Blom J (2003). Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state. Genome Biol, 4(1): R3PubMedCentralPubMedGoogle Scholar
  129. Lee P, Kim MS, Paik SM, Choi S H, Cho B R, Hahn J S (2013). Rim15- dependent activation of Hsf1 and Msn2/4 transcription factors by direct phosphorylation in Saccharomyces cerevisiae. FEBS Lett, 587 (22): 3648–3655PubMedGoogle Scholar
  130. Lee Y S, Huang K, Quiocho F A, O’Shea E K (2008). Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate. Nat Chem Biol, 4(1): 25–32PubMedCentralPubMedGoogle Scholar
  131. Lee Y S, Mulugu S, York J D, O’Shea E K (2007). Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science, 316(5821): 109–112PubMedCentralPubMedGoogle Scholar
  132. Lenburg M E, O’Shea E K (1996). Signaling phosphate starvation. Trends Biochem Sci, 21(10): 383–387PubMedGoogle Scholar
  133. Lewis C A, Parker S J, Fiske B P, McCloskey D, Gui D Y, Green C R, Vokes N I, Feist A M, Vander Heiden M G, Metallo C M (2014). Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell, 55(2): 253–263PubMedCentralPubMedGoogle Scholar
  134. Li B, Skinner C, Castello P R, Kato M, Easlon E, Xie L, Li T, Lu S P, Wang C, Tsang F, Poyton R O, Lin S J (2011). Identification of potential calorie restriction-mimicking yeast mutants with increased mitochondrial respiratory chain and nitric oxide levels. J Aging Res, 2011: 673185PubMedCentralPubMedGoogle Scholar
  135. Li M, Valsakumar V, Poorey K, Bekiranov S, Smith J S (2013). Genome-wide analysis of functional sirtuin chromatin targets in yeast. Genome Biol, 14(5): R48PubMedCentralPubMedGoogle Scholar
  136. Li P L, Zhang Y, Abais J M, Ritter J K, Zhang F (2013). Cyclic ADPribose and NAADP in vascular regulation and diseases. Messenger (Los Angel), 2(2): 63–85Google Scholar
  137. Lin S J, Defossez P A, Guarente L (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science, 289(5487): 2126–2128PubMedGoogle Scholar
  138. Lin S J, Ford E, Haigis M, Liszt G, Guarente L (2004). Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev, 18(1): 12–16PubMedCentralPubMedGoogle Scholar
  139. Lin S J, Kaeberlein M, Andalis A A, Sturtz L A, Defossez P A, Culotta V C, Fink G R, Guarente L (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature, 418(6895): 344–348PubMedGoogle Scholar
  140. Lin S S, Manchester J K, Gordon J I (2003). Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. J Biol Chem, 278(15): 13390–13397PubMedGoogle Scholar
  141. Lin Y Y, Lu J Y, Zhang J, Walter W, Dang W, Wan J, Tao S C, Qian J, Zhao Y, Boeke J D, Berger S L, Zhu H (2009). Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell, 136(6): 1073–1084PubMedCentralPubMedGoogle Scholar
  142. Liu Z, Thornton J, Spírek M, Butow R A (2008). Activation of the SPS amino acid-sensing pathway in Saccharomyces cerevisiae correlates with the phosphorylation state of a sensor component, Ptr3. Mol Cell Biol, 28(2): 551–563PubMedCentralPubMedGoogle Scholar
  143. Ljungdahl P O (2009). Amino-acid-induced signalling via the SPSsensing pathway in yeast. Biochem Soc Trans, 37(Pt 1): 242–247PubMedGoogle Scholar
  144. Ljungdahl P O, Daignan-Fornier B (2012). Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics, 190(3): 885–929PubMedCentralPubMedGoogle Scholar
  145. Llorente B, Dujon B (2000). Transcriptional regulation of the Saccharomyces cerevisiae DAL5 gene family and identification of the high affinity nicotinic acid permease TNA1 (YGR260w). FEBS Lett, 475(3): 237–241PubMedGoogle Scholar
  146. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo J L, Bonenfant D, Oppliger W, Jenoe P, Hall M N (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell, 10(3): 457–468PubMedGoogle Scholar
  147. Longo V D (2003). The Ras and Sch9 pathways regulate stress resistance and longevity. Exp Gerontol, 38(7): 807–811PubMedGoogle Scholar
  148. Longo V D, Fabrizio P (2012). Chronological aging in Saccharomyces cerevisiae. Subcell Biochem, 57: 101–121PubMedCentralPubMedGoogle Scholar
  149. Lu J Y, Lin Y Y, Sheu J C, Wu J T, Lee F J, Chen Y, Lin M I, Chiang F T, Tai T Y, Berger S L, Zhao Y, Tsai K S, Zhu H, Chuang L M, Boeke J D (2011). Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell, 146(6): 969–979PubMedCentralPubMedGoogle Scholar
  150. Lu S P, Kato M, Lin S J (2009). Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae. J Biol Chem, 284 (25): 17110–17119PubMedCentralPubMedGoogle Scholar
  151. Lu S P, Lin S J (2010). Regulation of yeast sirtuins by NAD(+) metabolism and calorie restriction. Biochim Biophys Acta, 1804(8): 1567–1575PubMedCentralPubMedGoogle Scholar
  152. Lu S P, Lin S J (2011). Phosphate-responsive signaling pathway is a novel component of NAD+ metabolism in Saccharomyces cerevisiae. J Biol Chem, 286(16): 14271–14281PubMedCentralPubMedGoogle Scholar
  153. Lundh F, Mouillon J M, Samyn D, Stadler K, Popova Y, Lagerstedt J O, Thevelein J M, Persson B L (2009). Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter. Biochemistry, 48(21): 4497–4505PubMedGoogle Scholar
  154. Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S (2004). Structure and function of nicotinamide mononucleotide adenylyltransferase. Curr Med Chem, 11(7): 873–885PubMedGoogle Scholar
  155. Marzluf G A (1997). Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol, 51(1): 73–96PubMedGoogle Scholar
  156. Matecic M, Smith D L, Pan X, Maqani N, Bekiranov S, Boeke J D, Smith J S (2010). A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet, 6(4): e1000921Google Scholar
  157. Mayer F V, Heath R, Underwood E, Sanders M J, Carmena D, McCartney R R, Leiper F C, Xiao B, Jing C, Walker P A, Haire L F, Ogrodowicz R, Martin S R, Schmidt M C, Gamblin S J, Carling D (2011). ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metab, 14(5): 707–714PubMedCentralPubMedGoogle Scholar
  158. McCartney R R, Schmidt M C (2001). Regulation of Snf1 kinase. ACTIVATION REQUIRES PHOSPHORYLATION OF THREONINE 210 BY AN UPSTREAM KINASE AS WELL AS A DISTINCT STEP MEDIATED BY THE SNF4 SUBUNIT. J Biol Chem, 276(39): 36460–36466PubMedGoogle Scholar
  159. McNabb D S, Pinto I (2005). Assembly of the Hap2p/Hap3p/Hap4p/ Hap5p-DNA complex in Saccharomyces cerevisiae. Eukaryot Cell, 4 (11): 1829–1839PubMedCentralPubMedGoogle Scholar
  160. McNabb D S, Xing Y, Guarente L (1995). Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev, 9(1): 47–58PubMedGoogle Scholar
  161. Medvedik O, Lamming DW, Kim K D, Sinclair D A (2007). MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol, 5(10): e261Google Scholar
  162. Menoyo S, Ricco N, Bru S, Hernández-Ortega S, Escoté X, Aldea M, Clotet J (2013). Phosphate-activated cyclin-dependent kinase stabilizes G1 cyclin to trigger cell cycle entry. Mol Cell Biol, 33 (7): 1273–1284PubMedCentralPubMedGoogle Scholar
  163. Mense S M, Zhang L (2006). Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res, 16(8): 681–692PubMedGoogle Scholar
  164. Mesquita A, Weinberger M, Silva A, Sampaio-Marques B, Almeida B, Leão C, Costa V, Rodrigues F, Burhans W C, Ludovico P (2010). Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci USA, 107(34): 15123–15128PubMedCentralPubMedGoogle Scholar
  165. Moazed D (2001). Common themes in mechanisms of gene silencing. Mol Cell, 8(3): 489–498PubMedGoogle Scholar
  166. Moriya H, Johnston M (2004). Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc Natl Acad Sci USA, 101(6): 1572–1577PubMedCentralPubMedGoogle Scholar
  167. Mortimer R K, Johnston J R (1959). Life span of individual yeast cells. Nature, 183(4677): 1751–1752PubMedGoogle Scholar
  168. Mouillon J M, Persson B L (2005). Inhibition of the protein kinase A alters the degradation of the high-affinity phosphate transporter Pho84 in Saccharomyces cerevisiae. Curr Genet, 48(4): 226–234PubMedGoogle Scholar
  169. Murakami C, Delaney J R, Chou A, Carr D, Schleit J, Sutphin G L, An E H, Castanza A S, Fletcher M, Goswami S, Higgins S, Holmberg M, Hui J, Jelic M, Jeong K S, Kim J R, Klum S, Liao E, Lin M S, Lo W, Miller H, Moller R, Peng Z J, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Schuster A, Singh M, Spector B L, VanderWende H, Wang A M, Wasko B M, Olsen B, Kaeberlein M (2012). pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast. Cell Cycle, 11(16): 3087–3096PubMedCentralPubMedGoogle Scholar
  170. Murakami C J, Wall V, Basisty N, Kaeberlein M (2011). Composition and acidification of the culture medium influences chronological aging similarly in vineyard and laboratory yeast. PLoS ONE, 6(9): e24530Google Scholar
  171. Natalini P, Ruggieri S, Raffaelli N, Magni G (1986). Nicotinamide mononucleotide adenylyltransferase. Molecular and enzymatic properties of the homogeneous enzyme from baker’s yeast. Biochemistry, 25(12): 3725–3729PubMedGoogle Scholar
  172. Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch A G, Marton M J (2001). Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol, 21(13): 4347–4368PubMedCentralPubMedGoogle Scholar
  173. Niles B J, Powers T (2014). TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species. Mol Biol Cell, 25(24): 3962–3972PubMedCentralPubMedGoogle Scholar
  174. Noda T, Klionsky D J (2008). The quantitative Pho8Delta60 assay of nonspecific autophagy. Methods Enzymol, 451: 33–42PubMedGoogle Scholar
  175. North B J, Verdin E (2004). Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol, 5(5): 224PubMedCentralPubMedGoogle Scholar
  176. Ocampo A, Liu J, Barrientos A (2013). NAD+ salvage pathway proteins suppress proteotoxicity in yeast models of neurodegeneration by promoting the clearance of misfolded/oligomerized proteins. Hum Mol Genet, 22(9): 1699–1708PubMedCentralPubMedGoogle Scholar
  177. Ocampo A, Liu J, Schroeder E A, Shadel G S, Barrientos A (2012). Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction. Cell Metab, 16(1): 55–67PubMedCentralPubMedGoogle Scholar
  178. Ohashi K, Kawai S, Murata K (2013). Secretion of quinolinic acid, an intermediate in the kynurenine pathway, for utilization in NAD+ biosynthesis in the yeast Saccharomyces cerevisiae. Eukaryot Cell, 12(5): 648–653PubMedCentralPubMedGoogle Scholar
  179. Omnus D J, Ljungdahl P O (2014). Latency of transcription factor Stp1 depends on a modular regulatory motif that functions as cytoplasmic retention determinant and nuclear degron. Mol Biol Cell, 25(23): 3823–3833PubMedCentralPubMedGoogle Scholar
  180. Omnus D J, Pfirrmann T, Andréasson C, Ljungdahl P O (2011). A phosphodegron controls nutrient-induced proteasomal activation of the signaling protease Ssy5. Mol Biol Cell, 22(15): 2754–2765PubMedCentralPubMedGoogle Scholar
  181. Overton M C, Chinault S L, Blumer K J (2005). Oligomerization of Gprotein- coupled receptors: lessons from the yeast Saccharomyces cerevisiae. Eukaryot Cell, 4(12): 1963–1970PubMedCentralPubMedGoogle Scholar
  182. Pan Y (2011). Mitochondria, reactive oxygen species, and chronological aging: a message from yeast. Exp Gerontol, 46(11): 847–852PubMedGoogle Scholar
  183. Pan Y, Schroeder E A, Ocampo A, Barrientos A, Shadel G S (2011). Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab, 13(6): 668–678PubMedCentralPubMedGoogle Scholar
  184. Panozzo C, Nawara M, Suski C, Kucharczyka R, Skoneczny M, Bécam A M, Rytka J, Herbert C J (2002). Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae. FEBS Lett, 517(1–3): 97–102PubMedGoogle Scholar
  185. Parua P K, Ratnakumar S, Braun K A, Dombek K M, Arms E, Ryan P M, Young E T (2010). 14-3-3 (Bmh) proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain. Mol Cell Biol, 30(22): 5273–5283PubMedCentralPubMedGoogle Scholar
  186. Pasula S, Jouandot D, Kim J H (2007). Biochemical evidence for glucose-independent induction of HXT expression in Saccharomyces cerevisiae. FEBS Lett, 581(17): 3230–3234PubMedCentralPubMedGoogle Scholar
  187. Peeters T, Louwet W, Geladé R, Nauwelaers D, Thevelein J M, Versele M (2006). Kelch-repeat proteins interacting with the Ga protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast. Proc Natl Acad Sci USA, 103(35): 13034–13039PubMedCentralPubMedGoogle Scholar
  188. Perrod S, Cockell MM, Laroche T, Renauld H, Ducrest A L, Bonnard C, Gasser S M (2001). A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast. EMBO J, 20 (1–2): 197–209PubMedCentralPubMedGoogle Scholar
  189. Persson B L, Lagerstedt J O, Pratt J R, Pattison-Granberg J, Lundh K, Shokrollahzadeh S, Lundh F (2003). Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet, 43(4): 225–244PubMedGoogle Scholar
  190. Pinson B, Vaur S, Sagot I, Coulpier F, Lemoine S, Daignan-Fornier B (2009). Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways. Genes Dev, 23(12): 1399–1407PubMedCentralPubMedGoogle Scholar
  191. Popova Y, Thayumanavan P, Lonati E, Agrochão M, Thevelein J M (2010). Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc Natl Acad Sci USA, 107(7): 2890–2895PubMedCentralPubMedGoogle Scholar
  192. Powers R W, Kaeberlein M, Caldwell S D, Kennedy B K, Fields S (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev, 20(2): 174–184PubMedCentralPubMedGoogle Scholar
  193. Preiss J, Handler P (1958a). Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J Biol Chem, 233(2): 488–492PubMedGoogle Scholar
  194. Preiss J, Handler P (1958b). Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J Biol Chem, 233(2): 493–500PubMedGoogle Scholar
  195. Ramsey K M, Mills K F, Satoh A, Imai S (2008). Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell, 7(1): 78–88PubMedCentralPubMedGoogle Scholar
  196. Revollo J R, Grimm A A, Imai S (2004). The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyl transferase regulates Sir2 activity in mammalian cells. J Biol Chem, 279(49): 50754–50763PubMedGoogle Scholar
  197. Rine J, Herskowitz I (1987). Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics, 116(1): 9–22PubMedCentralPubMedGoogle Scholar
  198. Rodgers J T, Lerin C, Haas W, Gygi S P, Spiegelman B M, Puigserver P (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434(7029): 113–118PubMedGoogle Scholar
  199. Rolland F, De Winde J H, Lemaire K, Boles E, Thevelein J M, Winderickx J (2000). Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol, 38(2): 348–358PubMedGoogle Scholar
  200. Roosen J, Engelen K, Marchal K, Mathys J, Griffioen G, Cameroni E, Thevelein JM, De Virgilio C, De Moor B, Winderickx J (2005). PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol, 55(3): 862–880PubMedGoogle Scholar
  201. Roth S, Kumme J, Schüller H J (2004). Transcriptional activators Cat8 and Sip4 discriminate between sequence variants of the carbon source-responsive promoter element in the yeast Saccharomyces cerevisiae. Curr Genet, 45(3): 121–128PubMedGoogle Scholar
  202. Rubenstein E M, McCartney R R, Zhang C, Shokat K M, Shirra M K, Arndt K M, Schmidt M C (2008). Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J Biol Chem, 283(1): 222–230PubMedCentralPubMedGoogle Scholar
  203. Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein J M (2010). Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res, 10(2): 134–149PubMedGoogle Scholar
  204. Samyn D R, Ruiz-Pávon L, Andersson M R, Popova Y, Thevelein J M, Persson B L (2012). Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H(+) transceptor and its effect on signalling to the PKA and PHO pathways. Biochem J, 445(3): 413–422PubMedGoogle Scholar
  205. Sancak Y, Peterson T R, Shaul Y D, Lindquist R A, Thoreen C C, Bar-Peled L, Sabatini D M (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 320(5882): 1496–1501PubMedCentralPubMedGoogle Scholar
  206. Sanz P (2003). Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochem Soc Trans, 31(Pt 1): 178–181PubMedGoogle Scholar
  207. Sasaki Y, Araki T, Milbrandt J (2006). Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J Neurosci, 26(33): 8484–8491PubMedGoogle Scholar
  208. Sauve A A, Schramm V L (2003). Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry, 42(31): 9249–9256PubMedGoogle Scholar
  209. Scheckhuber C Q, Erjavec N, Tinazli A, Hamann A, Nyström T, Osiewacz H D (2007). Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol, 9(1): 99–105PubMedGoogle Scholar
  210. Schleit J, Johnson S C, Bennett C F, Simko M, Trongtham N, Castanza A, Hsieh E J, Moller R M, Wasko B M, Delaney J R, Sutphin G L, Carr D, Murakami C J, Tocchi A, Xian B, Chen W, Yu T, Goswami S, Higgins S, Jeong K S, Kim J R, Klum S, Liao E, Lin M S, Lo W, Miller H, Olsen B, Peng Z J, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Singh M, Spector B L,We nde H V, An E H, Fletcher M, Jelic M, Rabinovitch P S, Maccoss M J, Han J D, Kennedy B K, Kaeberlein M (2013). Molecular mechanisms underlying genotypedependent responses to dietary restriction. Aging Cell, 12(6): 1050–1061PubMedGoogle Scholar
  211. Schmeisser K, Mansfeld J, Kuhlow D, Weimer S, Priebe S, Heiland I, Birringer M, Groth M, Segref A, Kanfi Y, Price N L, Schmeisser S, Schuster S, Pfeiffer A F, Guthke R, Platzer M, Hoppe T, Cohen H Y, Zarse K, Sinclair D A, Ristow M, Klum S, Liao E, Lin M S, Lo W, Miller H, Olsen B, Peng Z J, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Singh M, Spector B L,We nde H V, An E H, Fletcher M, Jelic M, Rabinovitch P S, Maccoss M J, Han J D, Kennedy B K, Kaeberlein M (2013). Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat Chem Biol, 9(11): 693–700PubMedCentralPubMedGoogle Scholar
  212. Schmidt M T, Smith B C, Jackson M D, Denu J M (2004). Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J Biol Chem, 279(38): 40122–40129PubMedGoogle Scholar
  213. Schmidt-Brauns J, Herbert M, Kemmer G, Kraiss A, Schlör S, Reidl J (2001). Is a NAD pyrophosphatase activity necessary for Haemophilus influenzae type b multiplication in the blood stream? Int J Med Microbiol, 291(3): 219–225PubMedGoogle Scholar
  214. Schüller H J (2003). Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet, 43 (3): 139–160PubMedGoogle Scholar
  215. Schulz T J, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007). Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab, 6(4): 280–293PubMedGoogle Scholar
  216. Shama S, Lai C Y, Antoniazzi J M, Jiang J C, Jazwinski S M (1998). Heat stress-induced life span extension in yeast. Exp Cell Res, 245 (2): 379–388PubMedGoogle Scholar
  217. Shimada K, Filipuzzi I, Stahl M, Helliwell S B, Studer C, Hoepfner D, Seeber A, Loewith R, Movva N R, Gasser S M (2013). TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks. Mol Cell, 51(6): 829–839PubMedGoogle Scholar
  218. Shirra MK, McCartney R R, Zhang C, Shokat KM, Schmidt MC, Arnd K M (2008). A chemical genomics study identifies Snf1 as a repressor of GCN4 translation. J Biol Chem, 283(51): 35889–35898PubMedCentralPubMedGoogle Scholar
  219. Shirra M K, Rogers S E, Alexander D E, Arndt K M (2005). The Snf1 protein kinase and Sit4 protein phosphatase have opposing functions in regulating TATA-binding protein association with the Saccharomyces cerevisiae INO1 promoter. Genetics, 169(4): 1957–1972PubMedCentralPubMedGoogle Scholar
  220. Sies H (1982). Metabolic Compartmentation. Orlando, FL, Academic PressGoogle Scholar
  221. Smets B, De Snijder P, Engelen K, Joossens E, Ghillebert R, Thevissen K, Marchal K, Winderickx J (2008). Genome-wide expression analysis reveals TORC1-dependent and-independent functions of Sch9. FEMS Yeast Res, 8(8): 1276–1288PubMedGoogle Scholar
  222. Smith D L, McClure J M, Matecic M, Smith J S (2007). Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell, 6(5): 649–662PubMedGoogle Scholar
  223. Smith J S, Boeke J D (1997). An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev, 11(2): 241–254PubMedGoogle Scholar
  224. Smith J S, Brachmann C B, Celic I, Kenna M A, Muhammad S, Starai V J, Avalos J L, Escalante-Semerena J C, Grubmeyer C, Wolberger C, Boeke J D (2000). A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA, 97(12): 6658–6663PubMedCentralPubMedGoogle Scholar
  225. Soontorngun N, Larochelle M, Drouin S, Robert F, Turcotte B (2007). Regulation of gluconeogenesis in Saccharomyces cerevisiae is mediated by activator and repressor functions of Rds2. Mol Cell Biol, 27(22): 7895–7905PubMedCentralPubMedGoogle Scholar
  226. Sporty J, Lin S J, Kato M, Ognibene T, Stewart B, Turteltaub K, Bench G (2009). Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae. Yeast, 26(7): 363–369PubMedCentralPubMedGoogle Scholar
  227. Staschke K A, Dey S, Zaborske J M, Palam L R, McClintick J N, Pan T, Edenberg H J, Wek R C (2010). Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem, 285(22): 16893–16911PubMedCentralPubMedGoogle Scholar
  228. Steffen K K, McCormick M A, Pham K M, MacKay V L, Delaney J R, Murakami C J, Kaeberlein M, Kennedy B K (2012). Ribosome deficiency protects against ER stress in Saccharomyces cerevisiae. Genetics, 191(1): 107–118PubMedCentralPubMedGoogle Scholar
  229. Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M (1997). SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev, 11(1): 83–93PubMedGoogle Scholar
  230. Sturgill TW, Cohen A, Diefenbacher M, Trautwein M, Martin D E, Hall M N (2008). TOR1 and TOR2 have distinct locations in live cells. Eukaryot Cell, 7(10): 1819–1830PubMedCentralPubMedGoogle Scholar
  231. Sun J, Kale S P, Childress A M, Pinswasdi C, Jazwinski S M (1994). Divergent roles of RAS1 and RAS2 in yeast longevity. J Biol Chem, 269(28): 18638–18645PubMedGoogle Scholar
  232. Sutherland C M, Hawley S A, McCartney R R, Leech A, Stark M J, Schmidt M C, Hardie D G (2003). Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol, 13(15): 1299–1305PubMedGoogle Scholar
  233. Sutton A, Heller R C, Landry J, Choy J S, Sirko A, Sternglanz R (2001). A novel form of transcriptional silencing by Sum1-1 requires Hst1 and the origin recognition complex. Mol Cell Biol, 21(10): 3514–3522PubMedCentralPubMedGoogle Scholar
  234. Swinnen E, Wanke V, Roosen J, Smets B, Dubouloz F, Pedruzzi I, Cameroni E, De Virgilio C, Winderickx J (2006). Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Div, 1(1): 3PubMedCentralPubMedGoogle Scholar
  235. Tanny J C, Kirkpatrick D S, Gerber S A, Gygi S P, Moazed D (2004). Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions. Mol Cell Biol, 24(16): 6931–6946PubMedCentralPubMedGoogle Scholar
  236. Thevelein J M, Cauwenberg L, Colombo S, Donation M, Dumortier F, Kraakman L, Lemaire K, Ma P, Nauwelaers D, Rolland F, Teunissen A, Versele M, Wera S, Winderickx J, Wera S, Winderickx J, De Winde J H, Van Dijck P (2000). Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol, 26(9–10): 819–825PubMedGoogle Scholar
  237. Todisco S, Agrimi G, Castegna A, Palmieri F (2006). Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J Biol Chem, 281(3): 1524–1531PubMedGoogle Scholar
  238. Tsang F, James C, Kato M, Myers V, Ilyas I, Tsang M, Lin S J (2015). Reduced Ssy1-Ptr3-Ssy5 (SPS) signaling extends replicative life span by enhancing NAD+ homeostasis in Saccharomyces cerevisiae. J Biol Chem, 290(20):12753–12764PubMedGoogle Scholar
  239. Ueda Y, Oshima Y (1975). A constitutive mutation, phoT, of the repressible acid phosphatase synthesis with inability to transport inorganic phosphate in Saccharomyces cerevisiae. Mol Gen Genet, 136: 255–259PubMedGoogle Scholar
  240. Unal E, Kinde B, Amon A (2011). Gametogenesis eliminates ageinduced cellular damage and resets life span in yeast. Science, 332 (6037). 1554–1557PubMedCentralPubMedGoogle Scholar
  241. Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach J R, De Virgilio C, Hall M N, Loewith R (2007). Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell, 26(5): 663–674PubMedGoogle Scholar
  242. van der Veer E, Nong Z, O’Neil C, Urquhart B, Freeman D, Pickering J G (2005). Pre-B-cell colony-enhancing factor regulates NAD+- dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ Res, 97(1): 25–34PubMedGoogle Scholar
  243. van Oevelen C J, van Teeffelen H A, van Werven F J, Timmers H T (2006). Snf1p-dependent Spt-Ada-Gcn5-acetyltransferase (SAGA) recruitment and chromatin remodeling activities on the HXT2 and HXT4 promoters. J Biol Chem, 281(7): 4523–4531PubMedGoogle Scholar
  244. Veatch J R, McMurray M A, Nelson Z W, Gottschling D E (2009). Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell, 137(7): 1247–1258PubMedCentralPubMedGoogle Scholar
  245. Vickers M F, Yao S Y, Baldwin S A, Young J D, Cass C E (2000). Nucleoside transporter proteins of Saccharomyces cerevisiae. Demonstration of a transporter (FUI1) with high uridine selectivity in plasma membranes and a transporter (FUN26) with broad nucleoside selectivity in intracellular membranes. J Biol Chem, 275 (34): 25931–25938PubMedGoogle Scholar
  246. Vlahakis A, Graef M, Nunnari J, Powers T (2014). TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci USA, 111 (29): 10586–10591PubMedCentralPubMedGoogle Scholar
  247. Vlahakis A, Powers T (2014). A role for TOR complex 2 signaling in promoting autophagy. Autophagy, 10(11): 2085–2086PubMedGoogle Scholar
  248. Voordeckers K, Kimpe M, Haesendonckx S, Louwet W, Versele M, Thevelein J M (2011). Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/ S6K ortholog Sch9. J Biol Chem, 286(25): 22017–22027PubMedCentralPubMedGoogle Scholar
  249. Wang C, Skinner C, Easlon E, Lin S J (2009). Deleting the 14-3-3 protein Bmh1 extends life span in Saccharomyces cerevisiae by increasing stress response. Genetics, 183(4): 1373–1384PubMedCentralPubMedGoogle Scholar
  250. Wang J, Jiang J C, Jazwinski S M (2010). Gene regulatory changes in yeast during life extension by nutrient limitation. Exp Gerontol, 45 (7–8): 621–631PubMedCentralPubMedGoogle Scholar
  251. Wanke V, Cameroni E, Uotila A, Piccolis M, Urban J, Loewith R, De Virgilio C (2008). Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol, 69(1): 277–285PubMedGoogle Scholar
  252. Wanke V, Pedruzzi I, Cameroni E, Dubouloz F, De Virgilio C (2005). Regulation of G0 entry by the Pho80-Pho85 cyclin-CDK complex. EMBO J, 24(24): 4271–4278PubMedCentralPubMedGoogle Scholar
  253. Wedaman K P, Reinke A, Anderson S, Yates J 3rd, McCaffery J M, Powers T (2003). Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol Cell, 14 (3): 1204–1220PubMedCentralPubMedGoogle Scholar
  254. Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo V D (2008). Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet, 4(1): e13Google Scholar
  255. Weinberger M, Feng L, Paul A, Smith D L Jr, Hontz R D, Smith J S, Vujcic M, Singh K K, Huberman J A, Burhans W C (2007). DNA replication stress is a determinant of chronological lifespan in budding yeast. PLoS ONE, 2(8): e748Google Scholar
  256. Weindruch W, Walford R L (1998). The retardation of aging and diseases by dietary restriction. Springfield, Illinois, USA, Charles C. ThomasGoogle Scholar
  257. Wek R C, Jackson B M, Hinnebusch A G (1989). Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc Natl Acad Sci USA, 86 (12): 4579–4583PubMedCentralPubMedGoogle Scholar
  258. Wiederhold E, Gandhi T, Permentier H P, Breitling R, Poolman B, Slotboom D J (2009). The yeast vacuolar membrane proteome. Mol Cell Proteomics, 8(2): 380–392PubMedGoogle Scholar
  259. Wilson J M, Le V Q, Zimmerman C, Marmorstein R, Pillus L (2006). Nuclear export modulates the cytoplasmic Sir2 homologue Hst2. EMBO Rep, 7(12): 1247–1251PubMedCentralPubMedGoogle Scholar
  260. Wogulis M, Chew E R, Donohoue P D, Wilson D K (2008). Identification of formyl kynurenine formamidase and kynurenine aminotransferase from Saccharomyces cerevisiae using crystallographic, bioinformatic and biochemical evidence. Biochemistry, 47 (6): 1608–1621PubMedGoogle Scholar
  261. Wu Z, Liu S Q, Huang D (2013). Dietary restriction depends on nutrient composition to extend chronological lifespan in budding yeast Saccharomyces cerevisiae. PLoS ONE, 8(5): e64448Google Scholar
  262. Wykoff D D, O’Shea E K (2001). Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics, 159(4): 1491–1499PubMedCentralPubMedGoogle Scholar
  263. Xiao B, Heath R, Saiu P, Leiper F C, Leone P, Jing C, Walker P A, Haire L, Eccleston J F, Davis C T, Martin S R, Carling D, Gamblin S J (2007). Structural basis for AMP binding to mammalian AMPactivated protein kinase. Nature, 449(7161): 496–500PubMedGoogle Scholar
  264. Xie J, Pierce M, Gailus-Durner V, Wagner M, Winter E, Vershon A K (1999). Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J, 18 (22): 6448–6454PubMedCentralPubMedGoogle Scholar
  265. Xu Y F, Létisse F, Absalan F, Lu W, Kuznetsova E, Brown G, Caudy A A, Yakunin A F, Broach J R, Rabinowitz J D (2013). Nucleotide degradation and ribose salvage in yeast. Mol Syst Biol, 9(1): 665PubMedCentralPubMedGoogle Scholar
  266. Yang J, Dungrawala H, Hua H, Manukyan A, Abraham L, Lane W, Mead H, Wright J, Schneider B L (2011). Cell size and growth rate are major determinants of replicative lifespan. Cell Cycle, 10(1): 144–155PubMedCentralPubMedGoogle Scholar
  267. Yao Y, Tsuchiyama S, Yang C, Bulteau A L, He C, Robison B, Tsuchiya M, Miller D, Briones V, Tar K, Potrero A, Friguet B, Kennedy B K, Schmidt M (2015). Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1. PLoS Genet, 11(1): e1004968Google Scholar
  268. Young J D, Yao S Y, Sun L, Cass C E, Baldwin S A (2008). Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica, 38(7–8): 995–1021PubMedGoogle Scholar
  269. Zaborske J M, Narasimhan J, Jiang L,Wek S A, Dittmar K A, Freimoser F, Pan T, Wek R C (2009). Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p. J Biol Chem, 284(37): 25254–25267PubMedCentralPubMedGoogle Scholar
  270. Zaborske JM, Wu X, Wek R C, Pan T (2010). Selective control of amino acid metabolism by the GCN2 eIF2 kinase pathway in Saccharomyces cerevisiae. BMC Biochem, 11(1): 29PubMedCentralPubMedGoogle Scholar
  271. Zaman S, Lippman S I, Schneper L, Slonim N, Broach J R (2009). Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol, 5: 245PubMedCentralPubMedGoogle Scholar
  272. Zargari A, Boban M, Heessen S, Andréasson C, Thyberg J, Ljungdahl P O (2007). Inner nuclear membrane proteins Asi1, Asi2, and Asi3 function in concert to maintain the latent properties of transcription factors Stp1 and Stp2. J Biol Chem, 282(1): 594–605PubMedGoogle Scholar
  273. Zhai R G, Zhang F, Hiesinger P R, Cao Y, Haueter C M, Bellen H J (2008). NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature, 452(7189): 887–891PubMedCentralPubMedGoogle Scholar
  274. Zhang T, Péli-Gulli M P, Yang H, De Virgilio C, Ding J (2012). Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the ego complex to activate TORC1. Structure, 20 (12): 2151–2160PubMedGoogle Scholar
  275. Zitomer R S, Lowry C V (1992). Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev, 56(1): 1–11PubMedCentralPubMedGoogle Scholar
  276. Zuin A, Carmona M, Morales-Ivorra I, Gabrielli N, Vivancos A P, Ayté J, Hidalgo E (2010). Lifespan extension by calorie restriction relies on the Sty1 MAP kinase stress pathway. EMBO J, 29(5): 981–991PubMedCentralPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Microbiology and Molecular Genetics, College of Biological SciencesUniversity of CaliforniaDavisUSA

Personalised recommendations