Advertisement

Frontiers in Biology

, Volume 10, Issue 1, pp 28–51 | Cite as

Transcriptional regulation of secretory capacity by bZip transcription factors

  • Rebecca M. Fox
  • Deborah J. AndrewEmail author
Review

Abstract

Cells of specialized secretory organs expand their secretory pathways to accommodate the increased protein load necessary for their function. The endoplasmic reticulum (ER), the Golgi apparatus and the secretory vesicles, expand not only the membrane components but also the protein machinery required for increased protein production and transport. Increased protein load causes an ER stress response akin to the Unfolded Protein Response (UPR). Recent work has implicated several bZip transcription factors in the regulation of protein components of the early secretory pathway necessary to alleviate this stress. Here, we highlight eight bZip transcription factors in regulating secretory pathway component genes. These include components of the three canonical branches of the UPR-ATF4, XBP1, and ATF6, as well as the five members of the Creb3 family of transcription factors.We review findings from both invertebrate and vertebrate model systems suggesting that all of these proteins increase secretory capacity in response to increased protein load. Finally, we propose that the Creb3 family of factors may have a dual role in secretory cell differentiation by also regulating the pathways necessary for cell cycle exit during terminal differentiation.

Keywords

bZip transcription factors endoplasmic reticulum Golgi secretion secretory capacity secretory vesicles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11515_2014_1338_MOESM1_ESM.pdf (361 kb)
Supplementary material, approximately 357 KB.

References

  1. Abrams E W, Andrew D J (2002). Prolyl 4-hydroxylase alpha-related proteins in Drosophila melanogaster: tissue-specific embryonic expression of the 99F8-9 cluster. Mech Dev, 112(1–2): 165–171PubMedGoogle Scholar
  2. Abrams E W, Andrew D J (2005). CrebA regulates secretory activity in the Drosophila salivary gland and epidermis. Development, 132(12): 2743–2758PubMedGoogle Scholar
  3. Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K (2008). ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct, 33(1): 75–89PubMedGoogle Scholar
  4. Adham I M, Eck T J, Mierau K, Müller N, Sallam M A, Paprotta I, Schubert S, Hoyer-Fender S, Engel W (2005). Reduction of spermatogenesis but not fertility in Creb3l4-deficient mice. Mol Cell Biol, 25(17): 7657–7664PubMedCentralPubMedGoogle Scholar
  5. Aebi M (2013). N-linked protein glycosylation in the ER. Biochim Biophys Acta, 1833(11): 2430–2437PubMedGoogle Scholar
  6. Alconada A, Bauer U, Hoflack B (1996). A tyrosine-based motif and a casein kinase II phosphorylation site regulate the intracellular trafficking of the varicella-zoster virus glycoprotein I, a protein localized in the trans-Golgi network. EMBO J, 15(22): 6096–6110PubMedCentralPubMedGoogle Scholar
  7. Antonin W, Meyer H A, Hartmann E (2000). Interactions between Spc2p and other components of the endoplasmic reticulum translocation sites of the yeast Saccharomyces cerevisiae. J Biol Chem, 275(44): 34068–34072PubMedGoogle Scholar
  8. Appenzeller-Herzog C, Hauri H P (2006). The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci, 119(Pt 11): 2173–2183PubMedGoogle Scholar
  9. Aragón T, van Anken E, Pincus D, Serafimova I M, Korennykh A V, Rubio C A, Walter P (2009). Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature, 457(7230): 736–740PubMedCentralPubMedGoogle Scholar
  10. Asada R, Kanemoto S, Kondo S, Saito A, Imaizumi K (2011). The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J Biochem, 149(5): 507–518PubMedGoogle Scholar
  11. Asada R, Saito A, Kawasaki N, Kanemoto S, Iwamoto H, Oki M, Miyagi H, Izumi S, Imaizumi K (2012). The endoplasmic reticulum stress transducer OASIS is involved in the terminal differentiation of goblet cells in the large intestine. J Biol Chem, 287(11): 8144–8153PubMedCentralPubMedGoogle Scholar
  12. Ast T, Cohen G, Schuldiner M (2013). A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell, 152(5): 1134–1145PubMedGoogle Scholar
  13. Ast T, Schuldiner M (2013). All roads lead to Rome (but some may be harder to travel): SRP-independent translocation into the endoplasmic reticulum. Crit Rev Biochem Mol Biol, 48(3): 273–288PubMedGoogle Scholar
  14. Audas T E, Li Y, Liang G, Lu R (2008). A novel protein, Luman/CREB3 recruitment factor, inhibits Luman activation of the unfolded protein response. Mol Cell Biol, 28(12): 3952–3966PubMedCentralPubMedGoogle Scholar
  15. Bailey D, Barreca C, O’Hare P (2007). Trafficking of the bZIP transmembrane transcription factor CREB-H into alternate pathways of ERAD and stress-regulated intramembrane proteolysis. Traffic, 8(12): 1796–1814PubMedGoogle Scholar
  16. Bailey D, O’Hare P (2007). Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid Redox Signal, 9(12): 2305–2321PubMedGoogle Scholar
  17. Barbosa S, Fasanella G, Carreira S, Llarena M, Fox R, Barreca C, Andrew D, O’Hare P (2013). An orchestrated program regulating secretory pathway genes and cargos by the transmembrane transcription factor CREB-H. Traffic, 14(4): 382–398PubMedCentralPubMedGoogle Scholar
  18. Barlowe C K, Miller E A (2013). Secretory protein biogenesis and traffic in the early secretory pathway. Genetics, 193(2): 383–410PubMedCentralPubMedGoogle Scholar
  19. Belmont P J, Chen WJ, San Pedro MN, Thuerauf D J, Gellings Lowe N, Gude N, Hilton B, Wolkowicz R, Sussman M A, Glembotski C C (2010). Roles for endoplasmic reticulum-associated degradation and the novel endoplasmic reticulum stress response gene Derlin-3 in the ischemic heart. Circ Res, 106(2): 307–316PubMedCentralPubMedGoogle Scholar
  20. Ben Aicha S, Lessard J, Pelletier M, Fournier A, Calvo E, Labrie C (2007). Transcriptional profiling of genes that are regulated by the endoplasmic reticulum-bound transcription factor AIbZIP/CREB3L4 in prostate cells. Physiol Genomics, 31(2): 295–305PubMedGoogle Scholar
  21. Berg R A, Prockop D J (1973). The thermal transition of a nonhydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem Biophys Res Commun, 52(1): 115–120Google Scholar
  22. Beznoussenko G V, Parashuraman S, Rizzo R, Polishchuk R, Martella O, Di Giandomenico D, Fusella A, Spaar A, Sallese M, Capestrano M G, Pavelka M, Vos M R, Rikers Y G, Helms V, Mironov A A, Luini A (2014). Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae. Elife. 3. doi:10.7554/eLife.02009Google Scholar
  23. Bommiasamy H, Back S H, Fagone P, Lee K, Meshinchi S, Vink E, Sriburi R, Frank M, Jackowski S, Kaufman R J, Brewer J W (2009). ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J Cell Sci, 122(Pt 10): 1626–1636PubMedCentralPubMedGoogle Scholar
  24. Bonfanti L, Mironov A A Jr, Martínez-Menárguez J A, Martella O, Fusella A, Baldassarre M, Buccione R, Geuze H J, Mironov A A Jr, Luini A (1998). Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell, 95(7): 993–1003PubMedGoogle Scholar
  25. Borgese N, Fasana E (2011). Targeting pathways of C-tail-anchored proteins. Biochim Biophys Acta, 1808(3): 937–946PubMedGoogle Scholar
  26. Braakman I, Bulleid N J (2011). Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem, 80(1): 71–99PubMedGoogle Scholar
  27. Brandizzi F, Barlowe C (2013). Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol, 14(6): 382–392PubMedCentralPubMedGoogle Scholar
  28. Bridgewater L C, Lefebvre V, de Crombrugghe B (1998). Chondrocytespecific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J Biol Chem, 273(24): 14998–15006PubMedGoogle Scholar
  29. Bulleid N J (2012). Disulfide bond formation in the mammalian endoplasmic reticulum. Cold Spring Harb Perspect Biol, 4(11): 4Google Scholar
  30. Bulleid N J, Ellgaard L (2011). Multiple ways to make disulfides. Trends Biochem Sci, 36(9): 485–492PubMedGoogle Scholar
  31. Calfon M, Zeng H, Urano F, Till J H, Hubbard S R, Harding H P, Clark S G, Ron D (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature, 415(6867): 92–96PubMedGoogle Scholar
  32. Capitani M, Sallese M (2009). The KDEL receptor: new functions for an old protein. FEBS Lett, 583(23): 3863–3871PubMedGoogle Scholar
  33. Capoccia B J, Jin R U, Kong Y Y, Peek R M Jr, Fassan M, Rugge M, Mills J C (2013). The ubiquitin ligase Mindbomb 1 coordinates gastrointestinal secretory cell maturation. J Clin Invest, 123(4): 1475–1491PubMedCentralPubMedGoogle Scholar
  34. Carlton J, Bujny M, Peter B J, Oorschot V M, Rutherford A, Mellor H, Klumperman J, McMahon H T, Cullen P J (2004). Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr Biol, 14(20): 1791–1800PubMedGoogle Scholar
  35. Carrasco D R, Sukhdeo K, Protopopova M, Sinha R, Enos M, Carrasco D E, Zheng M, Mani M, Henderson J, Pinkus G S, Munshi N, Horner J, Ivanova E V, Protopopov A, Anderson K C, Tonon G, DePinho R A (2007). The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell, 11(4): 349–360PubMedCentralPubMedGoogle Scholar
  36. Chan C P, Mak T Y, Chin K T, Ng I O, Jin D Y (2010). N-linked glycosylation is required for optimal proteolytic activation of membrane-bound transcription factor CREB-H. J Cell Sci, 123(Pt 9): 1438–1448PubMedGoogle Scholar
  37. Chapuy B, Tikkanen R, Mühlhausen C, Wenzel D, von Figura K, Höning S (2008). AP-1 and AP-3 mediate sorting of melanosomal and lysosomal membrane proteins into distinct post-Golgi trafficking pathways. Traffic, 9(7): 1157–1172PubMedGoogle Scholar
  38. Chartron J W, Gonzalez G M, Clemons W M Jr (2011). A structural model of the Sgt2 protein and its interactions with chaperones and the Get4/Get5 complex. J Biol Chem, 286(39): 34325–34334PubMedCentralPubMedGoogle Scholar
  39. Chen S, Novick P, Ferro-Novick S (2013). ER structure and function. Curr Opin Cell Biol, 25(4): 428–433PubMedGoogle Scholar
  40. Chin K T, Zhou H J, Wong C M, Lee J M, Chan C P, Qiang B Q, Yuan J G, Ng I O, Jin D Y (2005). The liver-enriched transcription factor CREB-H is a growth suppressor protein underexpressed in hepatocellular carcinoma. Nucleic Acids Res, 33(6): 1859–1873PubMedCentralPubMedGoogle Scholar
  41. Cobbold C, Coventry J, Ponnambalam S, Monaco A P (2004). Actin and microtubule regulation of trans-Golgi network architecture, and copper-dependent protein transport to the cell surface. Mol Membr Biol, 21(1): 59–66PubMedGoogle Scholar
  42. Cosson P, Lefkir Y, Démollière C, Letourneur F (1998). New COP1-binding motifs involved in ER retrieval. EMBO J, 17(23): 6863–6870PubMedCentralPubMedGoogle Scholar
  43. Cosson P, Schröder-Köhne S, Sweet D S, Démollière C, Hennecke S, Frigerio G, Letourneur F (1997). The Sec20/Tip20p complex is involved in ER retrieval of dilysine-tagged proteins. Eur J Cell Biol, 73(2): 93–97PubMedGoogle Scholar
  44. Cottam N P, Ungar D (2012). Retrograde vesicle transport in the Golgi. Protoplasma, 249(4): 943–955PubMedGoogle Scholar
  45. Cox J S, Walter P (1996). A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell, 87(3): 391–404PubMedGoogle Scholar
  46. Cross B C, Bond P J, Sadowski P G, Jha B K, Zak J, Goodman J M, Silverman R H, Neubert T A, Baxendale I R, Ron D, Harding H P (2012). The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc Natl Acad Sci USA, 109(15): E869–E878PubMedCentralPubMedGoogle Scholar
  47. Cross B C, Sinning I, Luirink J, High S (2009). Delivering proteins for export from the cytosol. Nat Rev Mol Cell Biol, 10(4): 255–264PubMedGoogle Scholar
  48. Csala M, Kereszturi É, Mandl J, Bánhegyi G (2012). The endoplasmic reticulum as the extracellular space inside the cell: role in protein folding and glycosylation. Antioxid Redox Signal, 16(10): 1100–1108PubMedGoogle Scholar
  49. Cui-Wang T, Hanus C, Cui T, Helton T, Bourne J, Watson D, Harris K M, Ehlers M D (2012). Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites. Cell, 148(1–2): 309–321PubMedCentralPubMedGoogle Scholar
  50. D’Alessio C, Caramelo J J, Parodi A J (2010). UDP-GlC:glycoprotein glucosyltransferase-glucosidase II, the ying-yang of the ER quality control. Semin Cell Dev Biol, 21(5): 491–499PubMedCentralPubMedGoogle Scholar
  51. D’Arcangelo J G, Stahmer K R, Miller E A (2013). Vesicle-mediated export from the ER: COPII coat function and regulation. Biochim Biophys Acta, 1833(11): 2464–2472PubMedCentralPubMedGoogle Scholar
  52. Dancourt J, Barlowe C (2010). Protein sorting receptors in the early secretory pathway. Annu Rev Biochem, 79(1): 777–802PubMedGoogle Scholar
  53. Delic M, Rebnegger C, Wanka F, Puxbaum V, Haberhauer-Troyer C, Hann S, Köllensperger G, Mattanovich D, Gasser B (2012). Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast. Free Radic Biol Med, 52(9): 2000–2012PubMedGoogle Scholar
  54. Delic M, Valli M, Graf A B, Pfeffer M, Mattanovich D, Gasser B (2013). The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev, 37(6): 872–914PubMedGoogle Scholar
  55. Denard B, CLee, Ye J. (2012). Doxorubicin blocks proliferation of cancer cells through proteolytic activation of CREB3L1. eLife, 1: e00090PubMedCentralPubMedGoogle Scholar
  56. Denard B, Seemann J, Chen Q, Gay A, Huang H, Chen Y, Ye J (2011). The membrane-bound transcription factor CREB3L1 is activated in response to virus infection to inhibit proliferation of virus-infected cells. Cell Host Microbe, 10(1): 65–74PubMedCentralPubMedGoogle Scholar
  57. Denic V (2012). A portrait of the GET pathway as a surprisingly complicated young man. Trends Biochem Sci, 37(10): 411–417PubMedCentralPubMedGoogle Scholar
  58. Denic V, Dötsch V, Sinning I (2013). Endoplasmic reticulum targeting and insertion of tail-anchored membrane proteins by the GET pathway. Cold Spring Harb Perspect Biol, 5(8): a013334PubMedCentralPubMedGoogle Scholar
  59. Deprez P, Gautschi M, Helenius A (2005). More than one glycan is needed for ER glucosidase II to allow entry of glycoproteins into the calnexin/calreticulin cycle. Mol Cell, 19(2): 183–195PubMedGoogle Scholar
  60. Egea P F, Stroud R M, Walter P (2005). Targeting proteins to membranes: structure of the signal recognition particle. Curr Opin Struct Biol, 15(2): 213–220PubMedGoogle Scholar
  61. Eleveld-Trancikova D, Sanecka A, van Hout-Kuijer MA, Looman MW, Hendriks I A, Jansen B J, Adema G J (2010). DC-STAMP interacts with ER-resident transcription factor LUMAN which becomes activated during DC maturation. Mol Immunol, 47(11–12): 1963–1973PubMedGoogle Scholar
  62. Ellgaard L, Helenius A (2003). Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol, 4(3): 181–191PubMedGoogle Scholar
  63. Fang H, Mullins C, Green N (1997). In addition to SEC11, a newly identified gene, SPC3, is essential for signal peptidase activity in the yeast endoplasmic reticulum. J Biol Chem, 272(20): 13152–13158PubMedGoogle Scholar
  64. Fang H, Panzner S, Mullins C, Hartmann E, Green N (1996). The homologue of mammalian SPC12 is important for efficient signal peptidase activity in Saccharomyces cerevisiae. J Biol Chem, 271(28): 16460–16465PubMedGoogle Scholar
  65. Feldheim D, Schekman R (1994). Sec72p contributes to the selective recognition of signal peptides by the secretory polypeptide translocation complex. J Cell Biol, 126(4): 935–943PubMedGoogle Scholar
  66. Fölsch H, Pypaert M, Schu P, Mellman I (2001). Distribution and function of AP-1 clathrin adaptor complexes in polarized epithelial cells. J Cell Biol, 152(3): 595–606PubMedCentralPubMedGoogle Scholar
  67. Fox R M, Hanlon C D, Andrew D J (2010). The CrebA/Creb3-like transcription factors are major and direct regulators of secretory capacity. J Cell Biol, 191(3): 479–492PubMedCentralPubMedGoogle Scholar
  68. Fox R M, Vaishnavi A, Maruyama R, Andrew D J (2013). Organspecific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA. Development, 140(10): 2160–2171PubMedCentralPubMedGoogle Scholar
  69. Frand A R, Cuozzo J W, Kaiser C A (2000). Pathways for protein disulphide bond formation. Trends Cell Biol, 10(5): 203–210PubMedGoogle Scholar
  70. Friedlander M, Blobel G (1985). Bovine opsin has more than one signal sequence. Nature, 318(6044): 338–343PubMedGoogle Scholar
  71. Fujimoto Y, Watanabe Y, Uchida M, Ozaki M (1984). Mammalian signal peptidase: partial purification and general characterization of the signal peptidase from microsomal membranes of porcine pancreas. J Biochem, 96(4): 1125–1131PubMedGoogle Scholar
  72. Funamoto T, Sekimoto T, Murakami T, Kurogi S, Imaizumi K, Chosa E (2011). Roles of the endoplasmic reticulum stress transducer OASIS in fracture healing. Bone, 49(4): 724–732PubMedGoogle Scholar
  73. Gardner B M, Pincus D, Gotthardt K, Gallagher C M, Walter P (2013). Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol, 5(3): a013169PubMedGoogle Scholar
  74. Gaynor E C, te Heesen S, Graham T R, Aebi M, Emr S D (1994). Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast. J Cell Biol, 127(3): 653–665PubMedGoogle Scholar
  75. Gidalevitz T, Stevens F, Argon Y (2013). Orchestration of secretory protein folding by ER chaperones. Biochim Biophys Acta, 1833(11): 2410–2424PubMedCentralPubMedGoogle Scholar
  76. Gillon A D, Latham C F, Miller E A (2012). Vesicle-mediated ER export of proteins and lipids. Biochim Biophys Acta, 1821(8): 1040–1049PubMedCentralPubMedGoogle Scholar
  77. Gilmore R, Blobel G (1983). Transient involvement of signal recognition particle and its receptor in the microsomal membrane prior to protein translocation. Cell, 35(3 Pt 2): 677–685PubMedGoogle Scholar
  78. Gilmore R, Blobel G, Walter P (1982). Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J Cell Biol, 95(2 Pt 1): 463–469PubMedGoogle Scholar
  79. Gleeson P A, Lock J G, Luke M R, Stow J L (2004). Domains of the TGN: coats, tethers and G proteins. Traffic, 5(5): 315–326PubMedGoogle Scholar
  80. Glick B S, Luini A (2011). Models for Golgi traffic: a critical assessment. Cold Spring Harb Perspect Biol, 3(11): a005215PubMedCentralPubMedGoogle Scholar
  81. Gorres K L, Raines R T (2010). Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol, 45(2): 106–124PubMedCentralPubMedGoogle Scholar
  82. Greenburg G, Shelness G S, Blobel G (1989). A subunit of mammalian signal peptidase is homologous to yeast SEC11 protein. J Biol Chem, 264(27): 15762–15765PubMedGoogle Scholar
  83. Gregorieff A, D E Stange, Kujala P, Begthel H, van den Born M, Korving J, Peters P J, Clevers H (2009). The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. Gastroenterology, 137: 1333–1345, e1331–1333PubMedGoogle Scholar
  84. Gristick H B, Rao M, Chartron J W, Rome M E, Shan S O, Clemons W M Jr (2014). Crystal structure of ATP-bound Get3-Get4-Get5 complex reveals regulation of Get3 by Get4. Nat Struct Mol Biol, 21(5): 437–442PubMedGoogle Scholar
  85. Grueber W B, Jan L Y, Jan Y N (2003). Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell, 112(6): 805–818PubMedGoogle Scholar
  86. Guo X, Mattera R, Ren X, Chen Y, Retamal C, González A, Bonifacino J S (2013a). The adaptor protein-1 μ1B subunit expands the repertoire of basolateral sorting signal recognition in epithelial cells. Dev Cell, 27(3): 353–366PubMedCentralPubMedGoogle Scholar
  87. Guo Y, Zanetti G, Schekman R (2013b). A novel GTP-binding proteinadaptor protein complex responsible for export of Vangl2 from the trans Golgi network. Elife, 2: e00160PubMedCentralPubMedGoogle Scholar
  88. Guzman N A, Rojas F J, Cutroneo K R (1976). Collagen lysyl hydroxylation occurs within the cisternae of the rough endoplasmic reticulum. Arch Biochem Biophys, 172(2): 449–454PubMedGoogle Scholar
  89. Hamman B D, Hendershot L M, Johnson A E (1998). BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell, 92(6): 747–758PubMedGoogle Scholar
  90. Han J, Back S H, Hur J, Lin Y H, Gildersleeve R, Shan J, Yuan C L, Krokowski D, Wang S, Hatzoglou M, Kilberg M S, Sartor M A, Kaufman R J (2013). ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol, 15(5): 481–490PubMedCentralPubMedGoogle Scholar
  91. Harding H P, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000). Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell, 6(5): 1099–1108PubMedGoogle Scholar
  92. Harding H P, Zhang Y, Ron D (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 397(6716): 271–274PubMedGoogle Scholar
  93. Harding H P, Zhang Y, Zeng H, Novoa I, Lu P D, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl D F, Bell J C, Hettmann T, Leiden J M, Ron D (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell, 11(3): 619–633PubMedGoogle Scholar
  94. Haze K, Okada T, Yoshida H, Yanagi H, Yura T, Negishi M, Mori K (2001). Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem J, 355(Pt 1): 19–28PubMedCentralPubMedGoogle Scholar
  95. Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell, 10(11): 3787–3799PubMedCentralPubMedGoogle Scholar
  96. Heuer D, Rejman Lipinski A, Machuy N, Karlas A, Wehrens A, Siedler F, Brinkmann V, Meyer T F (2009). Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature, 457(7230): 731–735PubMedGoogle Scholar
  97. Hino K, Saito A, Kido M, Kanemoto S, Asada R, Takai T, Cui M, Cui X, Imaizumi K (2014). Master regulator for chondrogenesis, Sox9, regulates transcriptional activation of the ER stress transducer BBF2H7/CREB3L2 in chondrocytes. J Biol Chem, doi:10.1074/jbc.M113.543322Google Scholar
  98. Hirschberg C B, Robbins P W, Abeijon C (1998). Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem, 67(1): 49–69PubMedGoogle Scholar
  99. Hirst J, Irving C, Borner G H (2013). Adaptor protein complexes AP-4 and AP-5: new players in endosomal trafficking and progressive spastic paraplegia. Traffic, 14(2): 153–164PubMedGoogle Scholar
  100. Hollien J, Lin J H, Li H, Stevens N, Walter P, Weissman J S (2009). Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol, 186(3): 323–331PubMedCentralPubMedGoogle Scholar
  101. Hollien J, Weissman J S (2006). Decay of endoplasmic reticulumlocalized mRNAs during the unfolded protein response. Science, 313(5783): 104–107PubMedGoogle Scholar
  102. Hu C C, Dougan S K, McGehee A M, Love J C, Ploegh H L (2009). XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells. EMBO J, 28(11): 1624–1636PubMedCentralPubMedGoogle Scholar
  103. Huh W J, Esen E, Geahlen J H, Bredemeyer A J, Lee A H, Shi G, Konieczny S F, Glimcher L H, Mills J C (2010). XBP1 controls maturation of gastric zymogenic cells by induction of MIST1 and expansion of the rough endoplasmic reticulum. Gastroenterology, 139(6): 2038–2049PubMedCentralPubMedGoogle Scholar
  104. Hulmes D J S (2008). Vertebrate Collagens-Structures, Functions and Biomedical Applications. In: Scheibel T (ed.). Fibrous Proteins. Landes Bioscience, Austin. 12–29Google Scholar
  105. Iyer S C, Ramachandran Iyer E P, Meduri R, Rubaharan M, Kuntimaddi A, Karamsetty M, Cox D N (2013). Cut, via CrebA, transcriptionally regulates the COPII secretory pathway to direct dendrite development in Drosophila. J Cell Sci, 126(Pt 20): 4732–4745PubMedCentralPubMedGoogle Scholar
  106. Jacob R, Naim H Y (2001). Apical membrane proteins are transported in distinct vesicular carriers. Curr Biol, 11(18): 1444–1450PubMedGoogle Scholar
  107. Janda C Y, Li J, Oubridge C, Hernández H, Robinson C V, Nagai K (2010). Recognition of a signal peptide by the signal recognition particle. Nature, 465(7297): 507–510PubMedCentralPubMedGoogle Scholar
  108. Jang S Y, Jang SW, Ko J (2012). Regulation of ADP-ribosylation factor 4 expression by small leucine zipper protein and involvement in breast cancer cell migration. Cancer Lett, 314(2): 185–197PubMedGoogle Scholar
  109. Jiang Y, Cheng Z, Mandon E C, Gilmore R (2008). An interaction between the SRP receptor and the translocon is critical during cotranslational protein translocation. J Cell Biol, 180(6): 1149–1161PubMedCentralPubMedGoogle Scholar
  110. Jin D Y, Wang H L, Zhou Y, Chun A C, Kibler K V, Hou Y D, Kung H, Jeang K T (2000). Hepatitis C virus core protein-induced loss of LZIP function correlates with cellular transformation. EMBO J, 19(4): 729–740PubMedCentralPubMedGoogle Scholar
  111. Johnson A E, van Waes MA (1999). The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol, 15(1): 799–842PubMedGoogle Scholar
  112. Johnson N, Powis K, High S (2013). Post-translational translocation into the endoplasmic reticulum. Biochim Biophys Acta, 1833(11): 2403–2409PubMedGoogle Scholar
  113. Johnston H D, Foote C, Santeford A, Nothwehr S F (2005). Golgi-to-late endosome trafficking of the yeast pheromone processing enzyme Ste13p is regulated by a phosphorylation site in its cytosolic domain. Mol Biol Cell, 16(3): 1456–1468PubMedCentralPubMedGoogle Scholar
  114. Kalies K U, Hartmann E (1996). Membrane topology of the 12- and the 25-kDa subunits of the mammalian signal peptidase complex. J Biol Chem, 271(7): 3925–3929PubMedGoogle Scholar
  115. Kaluza G, Repges S, McDowell W (1990). The significance of carbohydrate trimming for the antigenicity of the Semliki Forest virus glycoprotein E2. Virology, 176(2): 369–378PubMedGoogle Scholar
  116. Kametaka S, Sawada N, Bonifacino J S, Waguri S (2010). Functional characterization of protein-sorting machineries at the trans-Golgi network in Drosophila melanogaster. J Cell Sci, 123(Pt 3): 460–471PubMedCentralPubMedGoogle Scholar
  117. Keenan R J, Freymann D M, Stroud R M, Walter P (2001). The signal recognition particle. Annu Rev Biochem, 70(1): 755–775PubMedGoogle Scholar
  118. Kienzle C, von Blume J (2014). Secretory cargo sorting at the trans-Golgi network. Trends Cell Biol, 24(10): 584–593PubMedGoogle Scholar
  119. Kimata Y, Ishiwata-Kimata Y, Ito T, Hirata A, Suzuki T, Oikawa D, Takeuchi M, Kohno K (2007). Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J Cell Biol, 179(1): 75–86PubMedCentralPubMedGoogle Scholar
  120. Kivirikko K I, Myllyla R, Pihlajaniemi T (1989). Protein hydroxylation: prolyl 4-hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. FASEB J, 3: 1609–1617PubMedGoogle Scholar
  121. Ko J, Jang, SW, Kim Y S, Kim I S, Sung H J, Kim H H, Park J Y, Lee Y H, Kim J, Na D S (2004). Human LZIP binds to CCR1 and differentially affects the chemotactic activities of CCR1-dependent chemokines. FASEB J, 18: 890–892PubMedGoogle Scholar
  122. Kode A, Mosialou I, Silva B C, Joshi S, Ferron M, Rached M T, Kousteni S (2012). FoxO1 protein cooperates with ATF4 protein in osteoblasts to control glucose homeostasis. J Biol Chem, 287(12): 8757–8768PubMedCentralPubMedGoogle Scholar
  123. Kondo S, Saito A, Hino S, Murakami T, Ogata M, Kanemoto S, Nara S, Yamashita A, Yoshinaga K, Hara H, Imaizumi K (2007). BBF2H7, a novel transmembrane bZIP transcription factor, is a new type of endoplasmic reticulum stress transducer. Mol Cell Biol, 27(5): 1716–1729PubMedCentralPubMedGoogle Scholar
  124. Korennykh A V, Egea P F, Korostelev A A, Finer-Moore J, Zhang C, Shokat K M, Stroud R M, Walter P (2009). The unfolded protein response signals through high-order assembly of Ire1. Nature, 457(7230): 687–693PubMedCentralPubMedGoogle Scholar
  125. Kutay U, Hartmann E, Rapoport T A (1993). A class of membrane proteins with a C-terminal anchor. Trends Cell Biol, 3(3): 72–75PubMedGoogle Scholar
  126. Lavieu G, Zheng H, Rothman J E (2013). Stapled Golgi cisternae remain in place as cargo passes through the stack. Elife, 2: e00558PubMedCentralPubMedGoogle Scholar
  127. Lee A H, Heidtman K, Hotamisligil G S, Glimcher L H (2011a). Dual and opposing roles of the unfolded protein response regulated by IRE1alpha and XBP1 in proinsulin processing and insulin secretion. Proc Natl Acad Sci USA, 108(21): 8885–8890PubMedCentralPubMedGoogle Scholar
  128. Lee A H, Iwakoshi N N, Glimcher L H (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol, 23(21): 7448–7459PubMedCentralPubMedGoogle Scholar
  129. Lee J H, Giannikopoulos P, Duncan S A, Wang J, Johansen C T, Brown J D, Plutzky J, Hegele R A, Glimcher L H, Lee A H (2011b). The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nat Med, 17(7): 812–815PubMedCentralPubMedGoogle Scholar
  130. Lee M W, Chanda D, Yang J, Oh H, Kim S S, Yoon Y S, Hong S, Park K G, Lee I K, Choi C S, Hanson R W, Choi H S, Koo S H (2010). Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH. Cell Metab, 11(4): 331–339PubMedGoogle Scholar
  131. Lefebvre V, Huang W, Harley V R, Goodfellow P N, de Crombrugghe B (1997). SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol, 17(4): 2336–2346PubMedCentralPubMedGoogle Scholar
  132. Liang G, Audas T E, Li Y, Cockram G P, Dean J D, Martyn A C, Kokame K, Lu R (2006). Luman/CREB3 induces transcription of the endoplasmic reticulum (ER) stress response protein Herp through an ER stress response element. Mol Cell Biol, 26(21): 7999–8010PubMedCentralPubMedGoogle Scholar
  133. Liang H, Van Valkenburgh C, Chen X, Mullins C, Van Kaer L, Green N, Fang H (2003). Genetic complementation in yeast reveals functional similarities between the catalytic subunits of mammalian signal peptidase complex. J Biol Chem, 278(51): 50932–50939PubMedGoogle Scholar
  134. Losev E, Reinke C A, Jellen J, Strongin D E, Bevis B J, Glick B S (2006). Golgi maturation visualized in living yeast. Nature, 441(7096): 1002–1006PubMedGoogle Scholar
  135. Lu R, Misra V (2000). Potential role for luman, the cellular homologue of herpes simplex virus VP16 (alpha gene trans-inducing factor), in herpesvirus latency. J Virol, 74(2): 934–943PubMedCentralPubMedGoogle Scholar
  136. Lu R, Yang P, O’Hare P, Misra V (1997). Luman, a new member of the CREB/ATF family, binds to herpes simplex virus VP16-associated host cellular factor. Mol Cell Biol, 17(9): 5117–5126PubMedCentralPubMedGoogle Scholar
  137. Luini A (2011). A brief history of the cisternal progression-maturation model. Cell Logist, 1(1): 6–11PubMedCentralPubMedGoogle Scholar
  138. Luo B, Lee A S (2013). The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene, 32(7): 805–818PubMedGoogle Scholar
  139. Määttänen P, Gehring K, Bergeron J J, Thomas D Y (2010). Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol, 21(5): 500–511PubMedGoogle Scholar
  140. Mandon E C, Trueman S F, Gilmore R (2009). Translocation of proteins through the Sec61 and SecYEG channels. Curr Opin Cell Biol, 21(4): 501–507PubMedCentralPubMedGoogle Scholar
  141. Mandon E C, Trueman S F, Gilmore R (2013). Protein translocation across the rough endoplasmic reticulum. Cold Spring Harb Perspect Biol, 5(2): 5Google Scholar
  142. Mariappan M, Li X, Stefanovic S, Sharma A, Mateja A, Keenan R J, Hegde R S (2010). A ribosome-associating factor chaperones tailanchored membrane proteins. Nature, 466(7310): 1120–1124PubMedCentralPubMedGoogle Scholar
  143. Martinez-Menárguez J A, Prekeris R, Oorschot V M, Scheller R, Slot J W, Geuze H J, Klumperman J (2001). Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport. J Cell Biol, 155(7): 1213–1224PubMedCentralPubMedGoogle Scholar
  144. Matlack K E, Misselwitz B, Plath K, Rapoport T A (1999). BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell, 97(5): 553–564PubMedGoogle Scholar
  145. Matsuura-Tokita K, Takeuchi M, Ichihara A, Mikuriya K, Nakano A (2006). Live imaging of yeast Golgi cisternal maturation. Nature, 441(7096): 1007–1010PubMedGoogle Scholar
  146. McBride C E, Li J, Machamer C E (2007). The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein. J Virol, 81(5): 2418–2428PubMedCentralPubMedGoogle Scholar
  147. McGehee A M, Dougan S K, Klemm E J, Shui G, Park B, Kim Y M, Watson N, Wenk M R, Ploegh H L, Hu C C (2009). XBP-1-deficient plasmablasts show normal protein folding but altered glycosylation and lipid synthesis. J Immunol, 183(6): 3690–3699PubMedCentralPubMedGoogle Scholar
  148. Mellor P, Deibert L, Calvert B, Bonham K, Carlsen S A, Anderson D H (2013). CREB3L1 is a metastasis suppressor that represses expression of genes regulating metastasis, invasion, and angiogenesis. Mol Cell Biol, 33(24): 4985–4995PubMedCentralPubMedGoogle Scholar
  149. Melville D B, Montero-Balaguer M, Levic D S, Bradley K, Smith J R, Hatzopoulos A K, Knapik E W (2011). The feelgood mutation in zebrafish dysregulates COPII-dependent secretion of select extracellular matrix proteins in skeletal morphogenesis. Dis Model Mech, 4(6): 763–776PubMedCentralPubMedGoogle Scholar
  150. Menon A K, Vidugiriene J (1994). Topology of GPI biosynthesis in the endoplasmic reticulum. Braz J Med Biol Res, 27(2): 167–175PubMedGoogle Scholar
  151. Merulla J, Fasana E, Soldà T, Molinari M (2013). Specificity and regulation of the endoplasmic reticulum-associated degradation machinery. Traffic, 14(7): 767–777PubMedGoogle Scholar
  152. Meusser B, Hirsch C, Jarosch E, Sommer T (2005). ERAD: the long road to destruction. Nat Cell Biol, 7(8): 766–772PubMedGoogle Scholar
  153. Meyer H A, Hartmann E (1997). The yeast SPC22/23 homolog Spc3p is essential for signal peptidase activity. J Biol Chem, 272(20): 13159–13164PubMedGoogle Scholar
  154. Miller E A, Schekman R (2013). COPII- a flexible vesicle formation system. Curr Opin Cell Biol, 25(4): 420–427PubMedCentralPubMedGoogle Scholar
  155. Miller S E, Collins B M, McCoy A J, Robinson M S, Owen D J (2007). A SNARE-adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles. Nature, 450(7169): 570–574PubMedGoogle Scholar
  156. Mironov A A, Beznoussenko G V, Nicoziani P, Martella O, Trucco A, Kweon H S, Di Giandomenico D, Polishchuk R S, Fusella A, Lupetti P, Berger E G, Geerts W J, Koster A J, Burger K N, Luini A (2001). Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J Cell Biol, 155(7): 1225–1238PubMedCentralPubMedGoogle Scholar
  157. Moore K A, Hollien J (2012). The unfolded protein response in secretory cell function. Annu Rev Genet, 46(1): 165–183PubMedGoogle Scholar
  158. Mori K (2009). Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem, 146(6): 743–750PubMedGoogle Scholar
  159. Mullins C, Meyer H A, Hartmann E, Green N, Fang H (1996). Structurally related Spc1p and Spc2p of yeast signal peptidase complex are functionally distinct. J Biol Chem, 271(46): 29094–29099PubMedGoogle Scholar
  160. Murakami T, Kondo S, Ogata M, Kanemoto S, Saito A, Wanaka A, Imaizumi K (2006). Cleavage of the membrane-bound transcription factor OASIS in response to endoplasmic reticulum stress. J Neurochem, 96(4): 1090–1100PubMedGoogle Scholar
  161. Murakami T, Saito A, Hino S, Kondo S, Kanemoto S, Chihara K, Sekiya H, Tsumagari K, Ochiai K, Yoshinaga K, Saitoh M, Nishimura R, Yoneda T, Kou I, Furuichi T, Ikegawa S, Ikawa M, Okabe M, Wanaka A, Imaizumi K (2009). Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat Cell Biol, 11(10): 1205–1211PubMedGoogle Scholar
  162. Naim H Y, Joberty G, Alfalah M, Jacob R (1999). Temporal association of the N- and O-linked glycosylation events and their implication in the polarized sorting of intestinal brush border sucrase-isomaltase, aminopeptidase N, and dipeptidyl peptidase IV. J Biol Chem, 274(25): 17961–17967PubMedGoogle Scholar
  163. Nakamura N, Wei J H, Seemann J (2012). Modular organization of the mammalian Golgi apparatus. Curr Opin Cell Biol, 24(4): 467–474PubMedCentralPubMedGoogle Scholar
  164. Ng D T, Brown J D, Walter P (1996). Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol, 134(2): 269–278PubMedGoogle Scholar
  165. Ng D T, Walter P (1994). Protein translocation across the endoplasmic reticulum. Curr Opin Cell Biol, 6(4): 510–516PubMedGoogle Scholar
  166. Nikaido T, Yokoya S, Mori T, Hagino S, Iseki K, Zhang Y, Takeuchi M, Takaki H, Kikuchi S, Wanaka A (2001). Expression of the novel transcription factor OASIS, which belongs to the CREB/ATF family, in mouse embryo with special reference to bone development. Histochem Cell Biol, 116(2): 141–148PubMedGoogle Scholar
  167. Nishikawa S, Nakano A (1993). Identification of a gene required for membrane protein retention in the early secretory pathway. Proc Natl Acad Sci USA, 90(17): 8179–8183PubMedCentralPubMedGoogle Scholar
  168. Nyathi Y, Wilkinson B M, Pool M R (2013). Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim Biophys Acta, 1833(11): 2392–2402PubMedGoogle Scholar
  169. Oka O B, Bulleid N J (2013). Forming disulfides in the endoplasmic reticulum. Biochim Biophys Acta, 1833(11): 2425–2429PubMedGoogle Scholar
  170. Okada T, Yoshida H, Akazawa R, Negishi M, Mori K (2002). Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J, 366(Pt 2): 585–594PubMedCentralPubMedGoogle Scholar
  171. Olzmann J A, Kopito R R, Christianson J C (2013). The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb Perspect Biol, 5(9): 5Google Scholar
  172. Omori Y, Imai J, Suzuki Y, Watanabe S, Tanigami A, Sugano S (2002). OASIS is a transcriptional activator of CREB/ATF family with a transmembrane domain. Biochem Biophys Res Commun, 293(1): 470–477PubMedGoogle Scholar
  173. Orlean P, Menon A K (2007). Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res, 48(5): 993–1011PubMedGoogle Scholar
  174. Osborne A R, Rapoport T A, van den Berg B (2005). Protein translocation by the Sec61/SecY channel. Annu Rev Cell Dev Biol, 21(1): 529–550PubMedGoogle Scholar
  175. Panzner S, Dreier L, Hartmann E, Kostka S, Rapoport T A (1995). Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell, 81(4): 561–570PubMedGoogle Scholar
  176. Papandreou I, Denko N C, Olson M, Van Melckebeke H, Lust S, Tam A, Solow-Cordero D E, Bouley D M, Offner F, Niwa M, Koong A C (2011). Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood, 117(4): 1311–1314PubMedCentralPubMedGoogle Scholar
  177. Pellett P A, Dietrich F, Bewersdorf J, Rothman J E, Lavieu G (2013). Inter-Golgi transport mediated by COPI-containing vesicles carrying small cargoes. Elife, 2: e01296PubMedCentralPubMedGoogle Scholar
  178. Pols MS, van Meel E, Oorschot V, ten Brink C, Fukuda M, Swetha MG, Mayor S, Klumperman J (2013). hVps41 and VAMP7 function in direct TGN to late endosome transport of lysosomal membrane proteins. Nat Commun, 4: 1361PubMedGoogle Scholar
  179. Qi H, Fillion C, Labrie Y, Grenier J, Fournier A, Berger L, El-Alfy M, Labrie C (2002). AIbZIP, a novel bZIP gene located on chromosome 1q21.3 that is highly expressed in prostate tumors and of which the expression is up-regulated by androgens in LNCaP human prostate cancer cells. Cancer Res, 62(3): 721–733PubMedGoogle Scholar
  180. Quinn R S, Krane S M (1976). Abnormal properties of collagen lysyl hydroxylase from skin fibroblasts of siblings with hydroxylysinedeficient collagen. J Clin Invest, 57(1): 83–93PubMedCentralPubMedGoogle Scholar
  181. Raden D, Song W, Gilmore R (2000). Role of the cytoplasmic segments of Sec61alpha in the ribosome-binding and translocation-promoting activities of the Sec61 complex. J Cell Biol, 150(1): 53–64PubMedCentralPubMedGoogle Scholar
  182. Rapoport T A (2007). Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature, 450(7170): 663–669PubMedGoogle Scholar
  183. Reiling J H, Olive A J, Sanyal S, Carette J E, Brummelkamp T R, Ploegh H L, Starnbach M N, Sabatini D M (2013). A CREB3-ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nat Cell Biol, 15(12): 1473–1485PubMedCentralPubMedGoogle Scholar
  184. Rome M E, Rao M, Clemons W M, Shan S O (2013). Precise timing of ATPase activation drives targeting of tail-anchored proteins. Proc Natl Acad Sci USA, 110(19): 7666–7671PubMedCentralPubMedGoogle Scholar
  185. Roth J, Wang Y, Eckhardt A E, Hill R L (1994). Subcellular localization of the UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-mediated O-glycosylation reaction in the submaxillary gland. Proc Natl Acad Sci USA, 91(19): 8935–8939PubMedCentralPubMedGoogle Scholar
  186. Ryoo H D, Domingos P M, Kang M J, Steller H (2007). Unfolded protein response in a Drosophila model for retinal degeneration. EMBO J, 26(1): 242–252PubMedCentralPubMedGoogle Scholar
  187. Ryoo H D, Li J, Kang M J (2013). Drosophila XBP1 expression reporter marks cells under endoplasmic reticulum stress and with high protein secretory load. PLoS ONE, 8(9): e75774PubMedCentralPubMedGoogle Scholar
  188. Saito A, Hino S, Murakami T, Kanemoto S, Kondo S, Saitoh M, Nishimura R, Yoneda T, Furuichi T, Ikegawa S, Ikawa M, Okabe M, Imaizumi K (2009). Regulation of endoplasmic reticulum stress response by a BBF2H7-mediated Sec23a pathway is essential for chondrogenesis. Nat Cell Biol, 11(10): 1197–1204PubMedGoogle Scholar
  189. Saito A, Kanemoto S, Kawasaki N, Asada R, Iwamoto H, Oki M, Miyagi H, Izumi S, Sanosaka T, Nakashima K, Imaizumi K (2012). Unfolded protein response, activated by OASIS family transcription factors, promotes astrocyte differentiation. Nat Commun, 3: 967PubMedGoogle Scholar
  190. Saito A, Kanemoto S, Zhang Y, Asada R, Hino K, Imaizumi K (2014). Chondrocyte proliferation regulated by secreted luminal domain of ER stress transducer BBF2H7/CREB3L2. Mol Cell, 53(1): 127–139PubMedGoogle Scholar
  191. Sanecka A, Ansems M, van Hout-Kuijer M A, Looman M W, Prosser A C, Welten S, Gilissen C, Sama I E, Huynen MA, Veltman J A, Jansen B J, Eleveld-Trancikova D, Adema G J (2012). Analysis of genes regulated by the transcription factor LUMAN identifies ApoA4 as a target gene in dendritic cells. Mol Immunol, 50(1–2): 66–73PubMedGoogle Scholar
  192. Saraogi I, Shan S O (2011). Molecular mechanism of co-translational protein targeting by the signal recognition particle. Traffic, 12(5): 535–542PubMedCentralPubMedGoogle Scholar
  193. Sato K, Sato M, Nakano A (2003). Rer1p, a retrieval receptor for ER membrane proteins, recognizes transmembrane domains in multiple modes. Mol Biol Cell, 14(9): 3605–3616PubMedCentralPubMedGoogle Scholar
  194. Schnell D J, Hebert D N (2003). Protein translocons: multifunctional mediators of protein translocation across membranes. Cell, 112(4): 491–505PubMedGoogle Scholar
  195. Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M, Schmitt H D, Schwappach B, Weissman J S (2008). The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell, 134(4): 634–645PubMedCentralPubMedGoogle Scholar
  196. Schweizer A, Stahl P D, Rohrer J (2000). A di-aromatic motif in the cytosolic tail of the mannose receptor mediates endosomal sorting. J Biol Chem, 275(38): 29694–29700PubMedGoogle Scholar
  197. Semenza J C, Hardwick K G, Dean N, Pelham H R (1990). ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell, 61(7): 1349–1357PubMedGoogle Scholar
  198. Shaffer A L, Shapiro-Shelef M, Iwakoshi N N, Lee A H, Qian S B, Zhao H, Yu X, Yang L, Tan B K, Rosenwald A, Hurt E M, Petroulakis E, Sonenberg N, Yewdell J W, Calame K, Glimcher L H, Staudt L M (2004). XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity, 21(1): 81–93PubMedGoogle Scholar
  199. Shao S, Hegde R S (2011a). A calmodulin-dependent translocation pathway for small secretory proteins. Cell, 147(7): 1576–1588PubMedCentralPubMedGoogle Scholar
  200. Shao S, Hegde R S (2011b). Membrane protein insertion at the endoplasmic reticulum. Annu Rev Cell Dev Biol, 27(1): 25–56PubMedCentralPubMedGoogle Scholar
  201. Smolik SM, Rose R E, Goodman R H (1992). A cyclic AMP-responsive element-binding transcriptional activator in Drosophila melanogaster, dCREB-A, is a member of the leucine zipper family. Mol Cell Biol, 12(9): 4123–4131PubMedCentralPubMedGoogle Scholar
  202. Sone M, Zeng X, Larese J, Ryoo H D (2013). A modified UPR stress sensing system reveals a novel tissue distribution of IRE1/XBP1 activity during normal Drosophila development. Cell Stress Chaperones, 18(3): 307–319PubMedCentralPubMedGoogle Scholar
  203. Song W, Raden D, Mandon E C, Gilmore R (2000). Role of Sec61alpha in the regulated transfer of the ribosome-nascent chain complex from the signal recognition particle to the translocation channel. Cell, 100(3): 333–343PubMedGoogle Scholar
  204. Souid S, Lepesant J A, Yanicostas C (2007). The xbp-1 gene is essential for development in Drosophila. Dev Genes Evol, 217(2): 159–167PubMedGoogle Scholar
  205. Sousa M C, Ferrero-Garcia M A, Parodi A J (1992). Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDPGlc: glycoprotein glucosyltransferase. Biochemistry, 31(1): 97–105PubMedGoogle Scholar
  206. Spiro R G (2002). Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology, 12(4): 43R–56RPubMedGoogle Scholar
  207. Sriburi R, Jackowski S, Mori K, Brewer J W (2004). XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol, 167(1): 35–41PubMedCentralPubMedGoogle Scholar
  208. Stefanovic S, Hegde R S (2007). Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell, 128(6): 1147–1159PubMedGoogle Scholar
  209. Stefer S, Reitz S, Wang F, Wild K, Pang Y Y, Schwarz D, Bomke J, Hein C, Löhr F, Bernhard F, Denic V, Dötsch V, Sinning I (2011). Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex. Science, 333(6043): 758–762PubMedCentralPubMedGoogle Scholar
  210. Stirling J, O’hare P (2006). CREB4, a transmembrane bZip transcription factor and potential new substrate for regulation and cleavage by S1P. Mol Biol Cell, 17(1): 413–426PubMedCentralPubMedGoogle Scholar
  211. Storlazzi C T, Mertens F, Nascimento A, Isaksson M, Wejde J, Brosjo O, Mandahl N, Panagopoulos I (2003). Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet, 12(18): 2349–2358PubMedGoogle Scholar
  212. Strating J R, van Bakel N H, Leunissen J A, Martens G J (2009). A comprehensive overview of the vertebrate p24 family: identification of a novel tissue-specifically expressed member. Mol Biol Evol, 26(8): 1707–1714PubMedGoogle Scholar
  213. Suh J, Hutter H (2012). A survey of putative secreted and transmembrane proteins encoded in the C. elegans genome. BMC Genomics, 13(1): 333PubMedCentralPubMedGoogle Scholar
  214. Tanegashima K, Zhao H, Rebbert M L, Dawid I B (2009). Coordinated activation of the secretory pathway during notochord formation in the Xenopus embryo. Development, 136(21): 3543–3548PubMedCentralPubMedGoogle Scholar
  215. Taubenheim N, Tarlinton D M, Crawford S, Corcoran L M, Hodgkin P D, Nutt S L (2012). High rate of antibody secretion is not integral to plasma cell differentiation as revealed by XBP-1 deficiency. J Immunol, 189(7): 3328–3338PubMedGoogle Scholar
  216. Thibault G, Ng D T (2012). The endoplasmic reticulum-associated degradation pathways of budding yeast. Cold Spring Harb Perspect Biol, 4(12): 4Google Scholar
  217. Todd D J, Lee A H, Glimcher L H (2008). The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol, 8(9): 663–674PubMedGoogle Scholar
  218. Tohmonda T, Miyauchi Y, Ghosh R, Yoda M, Uchikawa S, Takito J, Morioka H, Nakamura M, Iwawaki T, Chiba K, Toyama Y, Urano F, Horiuchi K (2011). The IRE1α-XBP1 pathway is essential for osteoblast differentiation through promoting transcription of Osterix. EMBO Rep, 12(5): 451–457PubMedCentralPubMedGoogle Scholar
  219. Townsley FM, Pelham H R (1994). The KKXX signal mediates retrieval of membrane proteins from the Golgi to the ER in yeast. Eur J Cell Biol, 64(1): 211–216PubMedGoogle Scholar
  220. Travers K J, Patil C K, Wodicka L, Lockhart D J, Weissman J S, Walter P (2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER associated degradation. Cell, 101(3): 249–258PubMedGoogle Scholar
  221. Ungar D, Oka T, Brittle E E, Vasile E, Lupashin V V, Chatterton J E, Heuser J E, Krieger M, Waters M G (2002). Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol, 157(3): 405–415PubMedCentralPubMedGoogle Scholar
  222. Valdés P, Mercado G, Vidal R L, Molina C, Parsons G, Court F A, Martinez A, Galleguillos D, Armentano D, Schneider B L, Hetz C (2014). Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1. Proc Natl Acad Sci USA, 111(18): 6804–6809PubMedCentralPubMedGoogle Scholar
  223. Vecchi C, Montosi G, Zhang K, Lamberti I, Duncan S A, Kaufman R J, Pietrangelo A (2009). ER stress controls iron metabolism through induction of hepcidin. Science, 325(5942): 877–880PubMedCentralPubMedGoogle Scholar
  224. Vellanki R N, Zhang L, Guney MA, Rocheleau J V, Gannon M, Volchuk A (2010). OASIS/CREB3L1 induces expression of genes involved in extracellular matrix production but not classical endoplasmic reticulum stress response genes in pancreatic beta-cells. Endocrinology, 151(9): 4146–4157PubMedCentralPubMedGoogle Scholar
  225. Venditti R, Wilson C, De Matteis M A (2014). Exiting the ER: what we know and what we don’t. Trends Cell Biol, 24(1): 9–18PubMedGoogle Scholar
  226. Vidugiriene J, Menon A K (1994). The GPI anchor of cell-surface proteins is synthesized on the cytoplasmic face of the endoplasmic reticulum. J Cell Biol, 127(2): 333–341PubMedGoogle Scholar
  227. Volkmann K, Lucas J L, Vuga D, Wang X, Brumm D, Stiles C, Kriebel D, Der-Sarkissian A, Krishnan K, Schweitzer C, Liu Z, Malyankar U M, Chiovitti D, Canny M, Durocher D, Sicheri F, Patterson J B (2011). Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J Biol Chem, 286(14): 12743–12755PubMedCentralPubMedGoogle Scholar
  228. von Heijne G (1983). Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem, 133(1): 17–21Google Scholar
  229. Walter P, Blobel G (1981). Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol, 91(2 Pt 1): 557–561PubMedGoogle Scholar
  230. Walter P, Blobel G (1982). Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature, 299(5885): 691–698PubMedGoogle Scholar
  231. Walter P, Johnson A E (1994). Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol, 10(1): 87–119PubMedGoogle Scholar
  232. Wang F, Brown E C, Mak G, Zhuang J, Denic V (2010). A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol Cell, 40(1): 159–171PubMedCentralPubMedGoogle Scholar
  233. Wereszczynski J, McCammon J A (2012). Nucleotide-dependent mechanism of Get3 as elucidated from free energy calculations. Proc Natl Acad Sci USA, 109(20): 7759–7764PubMedCentralPubMedGoogle Scholar
  234. Willett R, Kudlyk T, Pokrovskaya I, Schönherr R, Ungar D, Duden R, Lupashin V (2013a). COG complexes form spatial landmarks for distinct SNARE complexes. Nat Commun, 4: 1553PubMedCentralPubMedGoogle Scholar
  235. Willett R, Ungar D, Lupashin V (2013b). The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol, 140(3): 271–283PubMedCentralPubMedGoogle Scholar
  236. Williams D B (2006). Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci, 119(Pt 4): 615–623PubMedGoogle Scholar
  237. Wu J, Rutkowski D T, Dubois M, Swathirajan J, Saunders T, Wang J, Song B, Yau G D, Kaufman R J (2007). ATF6alpha optimizes longterm endoplasmic reticulum function to protect cells from chronic stress. Dev Cell, 13(3): 351–364PubMedGoogle Scholar
  238. Xu X, Park J G, So J S, Hur K Y, Lee A H (2014). Transcriptional regulation of apolipoprotein A-IV by the transcription factor CREBH. J Lipid Res, 55(5): 850–859PubMedGoogle Scholar
  239. YaDeau J T, Klein C, Blobel G (1991). Yeast signal peptidase contains a glycoprotein and the Sec11 gene product. Proc Natl Acad Sci USA, 88(2): 517–521PubMedCentralPubMedGoogle Scholar
  240. Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A, Mori K (2007). Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell, 13(3): 365–376PubMedGoogle Scholar
  241. Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucoseregulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem, 273(50): 33741–33749PubMedGoogle Scholar
  242. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 107(7): 881–891PubMedGoogle Scholar
  243. Yoshizawa T, Hinoi E, Jung D Y, Kajimura D, Ferron M, Seo J, Graff J M, Kim J K, Karsenty G (2009). The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J Clin Invest, 119(9): 2807–2817PubMedCentralPubMedGoogle Scholar
  244. Young B P, Craven R A, Reid P J, Willer M, Stirling C J (2001). Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo. EMBO J, 20(1–2): 262–271PubMedCentralPubMedGoogle Scholar
  245. Zanetti G, Pahuja K B, Studer S, Shim S, Schekman R (2012). COPII and the regulation of protein sorting in mammals. Nat Cell Biol, 14(1): 20–28Google Scholar
  246. Zanna P T, Sánchez-Laorden B L, Pérez-Oliva A B, Turpín MC, Herraiz C, Jiménez-Cervantes C, García-Borrón J C (2008). Mechanism of dimerization of the human melanocortin 1 receptor. Biochem Biophys Res Commun, 368(2): 211–216PubMedGoogle Scholar
  247. Zhang C, Bai N, Chang A, Zhang Z, Yin J, Shen W, Tian Y, Xiang R, Liu C (2013). ATF4 is directly recruited by TLR4 signaling and positively regulates TLR4-trigged cytokine production in human monocytes. Cell Mol Immunol, 10(1): 84–94PubMedCentralPubMedGoogle Scholar
  248. Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski D T, Back S H, Kaufman R J (2006). Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell, 124(3): 587–599PubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.The Department of Cell BiologyThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations