Frontiers in Biology

, Volume 9, Issue 2, pp 114–126 | Cite as

Priming cancer cells for drug resistance: role of the fibroblast niche



Conventional and targeted chemotherapies remain integral strategies to treat solid tumors. Despite the large number of anti-cancer drugs available, chemotherapy does not completely eradicate disease. Disease recurrence and the growth of drug resistant tumors remain significant problems in anti-cancer treatment. To develop more effective treatment strategies, it is important to understand the underlying cellular and molecular mechanisms of drug resistance. It is generally accepted that cancer cells do not function alone, but evolve through interactions with the surrounding tumor microenvironment. As key cellular components of the tumor microenvironment, fibroblasts regulate the growth and progression of many solid tumors. Emerging studies demonstrate that fibroblasts secrete a multitude of factors that enable cancer cells to become drug resistant. This review will explore how fibroblast secretion of soluble factors act on cancer cells to enhance cancer cell survival and cancer stem cell renewal, contributing to the development of drug resistant cancer.


fibroblasts tumor recurrence drug resistance cell survival stem cells tumor dormancy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ablett M P O B C, Sims A H, Farnie G, Clarke R B (2013). A differential role for CXCR4 in the regulation of normal versus malignant breast stem cell activity. OncotargetEpub.Google Scholar
  2. Adams D J, Knick V C (1995). P-glycoprotein mediated resistance to 5′-nor-anhydro-vinblastine (Navelbine). Invest New Drugs, 13(1): 13–21PubMedGoogle Scholar
  3. Addadi Y, Moskovits N, Granot D, Lozano G, Carmi Y, Apte R N, Neeman M, Oren M (2010). p53 status in stromal fibroblasts modulates tumor growth in an SDF1-dependent manner. Cancer Res, 70(23): 9650–9658PubMedPubMedCentralGoogle Scholar
  4. Aguirre-Ghiso J A, Ossowski L, Rosenbaum S K (2004). Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res, 64(20): 7336–7345PubMedGoogle Scholar
  5. Ahn S, Cho J, Sung J, Lee J E, Nam S J, Kim K M, Cho E Y (2012). The prognostic significance of tumor-associated stroma in invasive breast carcinoma. Tumour Biol, 33(5): 1573–1580PubMedGoogle Scholar
  6. Aishima S, Taguchi K, Terashi T, Matsuura S, Shimada M, and Tsuneyoshi M (2003). Tenascin expression at the invasive front is associated with poor prognosis in intrahepatic cholangiocarcinoma. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc 16(10), 1019–1027Google Scholar
  7. Allavena P, Germano G, Marchesi F, Mantovani A (2011). Chemokines in cancer related inflammation. Exp Cell Res, 317(5): 664–673PubMedGoogle Scholar
  8. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers W R, Polyak K (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6(1): 17–32PubMedGoogle Scholar
  9. Amar S, Roy V, Perez E A (2009). Treatment of metastatic breast cancer: looking towards the future. Breast Cancer Res Treat, 114(3): 413–422PubMedGoogle Scholar
  10. Anastas J N, Moon R T (2013). WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer, 13(1): 11–26PubMedGoogle Scholar
  11. Astsaturov I, Ratushny V, Sukhanova A, Einarson M B, Bagnyukova T, Zhou Y, Devarajan K, Silverman J S, Tikhmyanova N, Skobeleva N, Pecherskaya A, Nasto R E, Sharma C, Jablonski S A, Serebriiskii I G, Weiner L M, Golemis E A (2010). Synthetic lethal screen of an EGFR-centered network to improve targeted therapies. Sci Signal, 3(140): ra67PubMedPubMedCentralGoogle Scholar
  12. Ayala G, Tuxhorn J A, Wheeler T M, Frolov A, Scardino P T, Ohori M, Wheeler M, Spitler J, Rowley D R (2003). Reactive stroma as a predictor of biochemical-free recurrence in prostate cancer. Clin Cancer Res, 9(13): 4792–4801PubMedGoogle Scholar
  13. Balkwill F R (2012). The chemokine system and cancer. J Pathol, 226(2): 148–157PubMedGoogle Scholar
  14. Balkwill F R, Mantovani A (2012). Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol, 22(1): 33–40PubMedGoogle Scholar
  15. Bao L, Haque A, Jackson K, Hazari S, Moroz K, Jetly R, Dash S (2011). Increased expression of P-glycoprotein is associated with doxorubicin chemoresistance in the metastatic 4T1 breast cancer model. Am J Pathol, 178(2): 838–852PubMedPubMedCentralGoogle Scholar
  16. Bao S, Ouyang G, Bai X, Huang Z, Ma C, Liu M, Shao R, Anderson R M, Rich J N, Wang X F (2004). Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell, 5(4): 329–339PubMedGoogle Scholar
  17. Baril P, Gangeswaran R, Mahon P C, Caulee K, Kocher H M, Harada T, Zhu M, Kalthoff H, Crnogorac-Jurcevic T, and Lemoine N R (2007). Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the beta4 integrin and the PI3k pathway. Oncogene 26(14), 2082–2094PubMedGoogle Scholar
  18. Bielen H, Houart C (2014). The Wnt Cries Many: Wnt regulation of neurogenesis through tissue patterning, proliferation and asymmetric cell division. Dev Neurobiol, doi: 10.1002/dneu.22168Google Scholar
  19. Binaschi M, Supino R, Gambetta R A, Giaccone G, Prosperi E, Capranico G, Cataldo I, Zunino F (1995). MRP gene overexpression in a human doxorubicin-resistant SCLC cell line: alterations in cellular pharmacokinetics and in pattern of cross-resistance. Int J Cancer, 62(1): 84–89PubMedGoogle Scholar
  20. Brellier F, Chiquet-Ehrismann R (2012). How do tenascins influence the birth and life of a malignant cell? J Cell Mol Med, 16(1): 32–40PubMedGoogle Scholar
  21. Brewster A M, Hortobagyi G N, Broglio K R, Kau S W, Santa-Maria C A, Arun B, Buzdar A U, Booser D J, Valero V, Bondy M, Esteva F J (2008). Residual risk of breast cancer recurrence 5 years after adjuvant therapy. J Natl Cancer Inst, 100(16): 1179–1183PubMedGoogle Scholar
  22. Brunner A, Mayerl C, Tzankov A, Verdorfer I, Tschörner I, Rogatsch H, Mikuz G (2004). Prognostic significance of tenascin-C expression in superficial and invasive bladder cancer. J Clin Pathol, 57(9): 927–931PubMedPubMedCentralGoogle Scholar
  23. Buck M B, Pfizenmaier K, Knabbe C (2004). Antiestrogens induce growth inhibition by sequential activation of p38 mitogen-activated protein kinase and transforming growth factor-beta pathways in human breast cancer cells. Mol Endocrinol, 18(7): 1643–1657PubMedGoogle Scholar
  24. Burger J A, and Kipps T J (2006). CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood, 107(5): 1761–1767PubMedGoogle Scholar
  25. Busam K J (2011). Desmoplastic melanoma. Clin Lab Med, 31(2): 321–330PubMedGoogle Scholar
  26. Buyukbayram H, Arslan A (2002). Value of tenascin-C content and association with clinicopathological parameters in uterine cervical lesions. Int J Cancer, 100(6): 719–722PubMedGoogle Scholar
  27. Camps J L, Chang S M, Hsu T C, Freeman M R, Hong S J, Zhau H E, von Eschenbach A C, Chung L W (1990). Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc Natl Acad Sci USA, 87(1): 75–79PubMedPubMedCentralGoogle Scholar
  28. Cecchi F, Rabe D C, Bottaro D P (2010). Targeting the HGF/Met signalling pathway in cancer. Eur J Cancer, 46(7): 1260–1270PubMedPubMedCentralGoogle Scholar
  29. Chao C, Carmical J R, Ives K L, Wood T G, Aronson J F, Gomez G A, Djukom C D, Hellmich M R (2012). CD133 + colon cancer cells are more interactive with the tumor microenvironment than CD133-cells. Lab Invest, 92(3): 420–436PubMedPubMedCentralGoogle Scholar
  30. Chen J T, Huang C Y, Chiang Y Y, Chen W H, Chiou S H, Chen C Y, Chow K C (2008). HGF increases cisplatin resistance via downregulation of AIF in lung cancer cells. Am J Respir Cell Mol Biol, 38(5): 559–565PubMedGoogle Scholar
  31. Chen S S, Lee L (1984). Prognostic significance of morphology of tumor and retroperitoneal lymph nodes in epithelial carcinoma of the ovary. II. Correlation with survival. Gynecol Oncol, 18(1): 94–99PubMedGoogle Scholar
  32. Choi K U, Yun J S, Lee I H, Heo S C, Shin S H, Jeon E S, Choi Y J, Suh D S, Yoon M S, Kim J H (2011). Lysophosphatidic acid-induced expression of periostin in stromal cells: Prognoistic relevance of periostin expression in epithelial ovarian cancer. Int J Cancer, 128(2): 332–342PubMedGoogle Scholar
  33. Cohen M, Marchand-Adam S, Lecon-Malas V, Marchal-Somme J, Boutten A, Durand G, Crestani B, Dehoux M (2006). HGF synthesis in human lung fibroblasts is regulated by oncostatin M. Am J Physiol Lung Cell Mol Physiol, 290(6): L1097–L1103PubMedGoogle Scholar
  34. Cohen S J, Alpaugh R K, Palazzo I, Meropol N J, Rogatko A, Xu Z, Hoffman J P, Weiner L M, Cheng J D (2008). Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas, 37(2): 154–158PubMedGoogle Scholar
  35. Conklin M W, Keely P J (2012). Why the stroma matters in breast cancer: insights into breast cancer patient outcomes through the examination of stromal biomarkers. Cell Adhes Migr, 6(3): 249–260Google Scholar
  36. Conti I, Rollins B J (2004). CCL2 (monocyte chemoattractant protein-1) and cancer. Semin Cancer Biol, 14(3): 149–154PubMedGoogle Scholar
  37. Dačević M, Isaković A, Podolski-Renić A, Isaković A M, Stanković T, Milošević Z, Rakić L, Ruždijić S, Pešić M (2013). Purine nucleoside analog-sulfinosine modulates diverse mechanisms of cancer progression in multi-drug resistant cancer cell lines. PLoS ONE, 8(1): e54044PubMedPubMedCentralGoogle Scholar
  38. Daly A J, McIlreavey L, Irwin C R (2008). Regulation of HGF and SDF-1 expression by oral fibroblasts-implications for invasion of oral cancer. Oral Oncol, 44(7): 646–651PubMedGoogle Scholar
  39. de Boer R A, van Veldhuisen D J, Gansevoort R T, Muller Kobold A C, van Gilst W H, Hillege H L, Bakker S J, van der Harst P (2012). The fibrosis marker galectin-3 and outcome in the general population. J Intern Med, 272(1): 55–64PubMedGoogle Scholar
  40. de Boussac H, Orbán T I, Várady G, Tihanyi B, Bacquet C, Brózik A, Váradi A, Sarkadi B, Arányi T (2012). Stimulus-induced expression of the ABCG2 multidrug transporter in HepG2 hepatocarcinoma model cells involves the ERK1/2 cascade and alternative promoters. Biochem Biophys Res Commun, 426(2): 172–176PubMedGoogle Scholar
  41. De Wever O, Nguyen Q D, Van Hoorde L, Bracke M, Bruyneel E, Gespach C, Mareel M (2004). Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J, 18(9): 1016–1018PubMedGoogle Scholar
  42. Dean M (2009). ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia, 14(1): 3–9PubMedGoogle Scholar
  43. Deng B, Huang W, Tan Q Y, Fan X Q, Jiang Y G, Liu L, Zhong Y Y, Liang Y G, Wang R W (2011). Breast cancer anti-estrogen resistance protein 1 (BCAR1/p130cas) in pulmonary disease tissue and serum. Mol Diagn Ther, 15(1): 31–40PubMedGoogle Scholar
  44. DeVita V T Jr, Chu E (2008). A history of cancer chemotherapy. Cancer Res, 68(21): 8643–8653PubMedGoogle Scholar
  45. Diah S K, Smitherman P K, Aldridge J, Volk E L, Schneider E, Townsend A J, Morrow C S (2001). Resistance to mitoxantrone in multidrug-resistant MCF7 breast cancer cells: evaluation of mitoxantrone transport and the role of multidrug resistance protein family proteins. Cancer Res, 61(14): 5461–5467PubMedGoogle Scholar
  46. Diaz L A, Jr., Williams R T, Wu J, Kinde I, Hecht J R, Berlin J, Allen B, Bozic I, Reiter J G, Nowak M A, Kinzler K W, Oliner K S, and Vogelstein B (2012). The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404), 537–540PubMedPubMedCentralGoogle Scholar
  47. Domanska U M, Timmer-Bosscha H, Nagengast W B, Oude Munnink T H, Kruizinga R C, Ananias H J, Kliphuis NM, Huls G, De Vries E G, de Jong I J, Walenkamp A M (2012). CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia, 14(8): 709–718PubMedPubMedCentralGoogle Scholar
  48. Dubrovska A, Elliott J, Salamone R J, Telegeev G D, Stakhovsky A E, Schepotin I B, Yan F, Wang Y, Bouchez L C, Kularatne S A, Watson J, Trussell C, Reddy V A, Cho C Y, Schultz P G (2012). CXCR4 expression in prostate cancer progenitor cells. PLoS ONE, 7(2): e31226PubMedPubMedCentralGoogle Scholar
  49. Earp H S, Dawson T L, Li X, Yu H (1995). Heterodimerization and functional interaction between EGF receptor family members: a new signaling paradigm with implications for breast cancer research. Breast Cancer Res Treat, 35(1): 115–132PubMedGoogle Scholar
  50. Emoto K, Yamada Y, Sawada H, Fujimoto H, Ueno M, Takayama T, Kamada K, Naito A, Hirao S, and Nakajima Y (2001). Annexin II overexpression correlates with stromal tenascin-C overexpression: a prognostic marker in colorectal carcinoma. Cancer, 92(6): 1419–1426PubMedGoogle Scholar
  51. Erbas B, Provenzano E, Armes J, Gertig D (2006). The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res Treat, 97(2): 135–144PubMedGoogle Scholar
  52. Eyman D, Damodarasamy M, Plymate S R, Reed M J (2009). CCL5 secreted by senescent aged fibroblasts induces proliferation of prostate epithelial cells and expression of genes that modulate angiogenesis. J Cell Physiol, 220(2): 376–381PubMedPubMedCentralGoogle Scholar
  53. Fang W B, Jokar I, Zou A, Lambert D, Dendukuri P, Cheng N (2012). CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 protein- and p42/44 mitogenactivated protein kinase (MAPK)-dependent mechanisms. J Biol Chem, 287(43): 36593–36608PubMedPubMedCentralGoogle Scholar
  54. Feig C, Jones J O, Kraman M, Wells R J, Deonarine A, Chan D S, Connell C M, Roberts E W, Zhao Q, Caballero O L, Teichmann S A, Janowitz T, Jodrell D I, Tuveson D A, Fearon D T (2013). Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA, 110(50): 20212–20217PubMedPubMedCentralGoogle Scholar
  55. Flaherty K T, Puzanov I, Kim K B, Ribas A, McArthur G A, Sosman J A, O’Dwyer P J, Lee R J, Grippo J F, Nolop K, Chapman P B (2010). Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med, 363(9): 809–819PubMedPubMedCentralGoogle Scholar
  56. Fleming J M, Miller T C, Kidacki M, Ginsburg E, Stuelten C H, Stewart D A, Troester M A, Vonderhaar B K (2012). Paracrine interactions between primary human macrophages and human fibroblasts enhance murine mammary gland humanization in vivo. Breast Cancer Res, 14(3): R97PubMedPubMedCentralGoogle Scholar
  57. Foley J, Nickerson N K, Nam S, Allen K T, Gilmore J L, Nephew K P, Riese D J 2nd (2010). EGFR signaling in breast cancer: bad to the bone. Semin Cell Dev Biol, 21(9): 951–960PubMedPubMedCentralGoogle Scholar
  58. Fujimoto H, Sangai T, Ishii G, Ikehara A, Nagashima T, Miyazaki M, Ochiai A (2009). Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer, 125(6): 1276–1284PubMedGoogle Scholar
  59. Fukunaga-Kalabis M, Martinez G, Nguyen T K, Kim D, Santiago-Walker A, Roesch A, and Herlyn M (2010). Tenascin-C promotes melanoma progression by maintaining the ABCB5-positive side population. Oncogene, 29(46): 6115–6124PubMedPubMedCentralGoogle Scholar
  60. Gao C F, Vande Woude G F (2005). HGF/SF-Met signaling in tumor progression. Cell Res, 15(1): 49–51PubMedGoogle Scholar
  61. Gillan L, Matei D, Fishman D A, Gerbin C S, Karlan B Y, Chang D D (2002). Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res, 62(18): 5358–5364PubMedGoogle Scholar
  62. Goldberg R M (2006). Intensive surveillance after stage II or III colorectal cancer: is it worth it? J Clin Oncol, 24(3): 330–331PubMedGoogle Scholar
  63. Gong X G, Lv Y F, Li X Q, Xu F G, Ma Q Y (2010). Gemcitabine resistance induced by interaction between alternatively spliced segment of tenascin-C and annexin A2 in pancreatic cancer cells. Biol Pharm Bull, 33(8): 1261–1267PubMedGoogle Scholar
  64. Guirouilh J, Castroviejo M, Balabaud C, Desmouliere A, Rosenbaum J (2000). Hepatocarcinoma cells stimulate hepatocyte growth factor secretion in human liver myofibroblasts. Int J Oncol, 17(4): 777–781PubMedGoogle Scholar
  65. Gupta V, Bassi D E, Simons J D, Devarajan K, Al-Saleem T, Uzzo R G, Cukierman E (2011). Elevated expression of stromal palladin predicts poor clinical outcome in renal cell carcinoma. PLoS ONE, 6(6): e21494PubMedPubMedCentralGoogle Scholar
  66. Hasebe T, Mukai K, Tsuda H, Ochiai A (2000). New prognostic histological parameter of invasive ductal carcinoma of the breast: clinicopathological significance of fibrotic focus. Pathol Int, 50(4): 263–272PubMedGoogle Scholar
  67. Heidelberger C, Chaudhuri N K, Danneberg P, Mooren D, Griesbach L, Duschinsky R, Schnitzer R J, Pleven E, Scheiner J (1957). Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature, 179(4561): 663–666PubMedGoogle Scholar
  68. Hembruff S L, Jokar I, Yang L, Cheng N (2010). Loss of transforming growth factor-beta signaling in mammary fibroblasts enhances CCL2 secretion to promote mammary tumor progression through macrophage-dependent and-independent mechanisms. Neoplasia, 12(5): 425–433PubMedPubMedCentralGoogle Scholar
  69. Hermann P C, Huber S L, Herrler T, Aicher A, Ellwart J W, Guba M, Bruns C J, Heeschen C (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3): 313–323PubMedGoogle Scholar
  70. Herrera M, Herrera A, Domínguez G, Silva J, García V, García J M, Gómez I, Soldevilla B, Muñoz C, Provencio M, Campos-Martin Y, García de Herreros A, Casal I, Bonilla F, Peña C (2013). Cancerassociated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients. Cancer Sci, 104(4): 437–444PubMedGoogle Scholar
  71. Hidalgo M (2010). Pancreatic cancer. N Engl J Med, 362(17): 1605–1617PubMedGoogle Scholar
  72. Holohan C, Van Schaeybroeck S, Longley D B, Johnston P G (2013). Cancer drug resistance: an evolving paradigm. Nat Rev Cancer, 13(10): 714–726PubMedGoogle Scholar
  73. Hong L Z, Wei X W, Chen J F, Shi Y (2013). Overexpression of periostin predicts poor prognosis in non-small cell lung cancer. Oncol Lett, 6(6):1595–1603PubMedPubMedCentralGoogle Scholar
  74. Ibarra-Drendall C, Dietze E C, Seewaldt V L (2011). Metabolic syndrome and breast cancer risk: Is there a role for metformin? Current Breast Cancer Rep, 3(3): 142–150Google Scholar
  75. Ilmonen S, Jahkola T, Turunen J P, Muhonen T, Asko-Seljavaara S (2004). Tenascin-C in primary malignant melanoma of the skin. Histopathology, 45(4): 405–411PubMedGoogle Scholar
  76. Jahkola T, Toivonen T, Virtanen I, von Smitten K, Nordling S, von Boguslawski K, Haglund C, Nevanlinna H, Blomqvist C (1998). Tenascin-C expression in invasion border of early breast cancer: a predictor of local and distant recurrence. Br J Cancer, 78(11): 1507–1513PubMedPubMedCentralGoogle Scholar
  77. Jin J, Huang M, Wei H L, Liu G T (2002). Mechanism of 5-fluorouracil required resistance in human hepatocellular carcinoma cell line Bel (7402). World J Gastroenterol, 8(6): 1029–1034PubMedGoogle Scholar
  78. Kahn N, Meister M, Eberhardt R, Muley T, Schnabel P A, Bender C, Johannes M, Keitel D, Sultmann H, Herth F J, Kuner R (2012). Early detection of lung cancer by molecular markers in endobronchial epithelial-lining fluid. J Thoracic Oncol, 7(6): 1001–1008Google Scholar
  79. Kalluri R, Zeisberg M (2006). Fibroblasts in cancer. Nat Rev Cancer, 6(5): 392–401PubMedGoogle Scholar
  80. Kaseda K, Ishii G, Aokage K, Takahashi A, Kuwata T, Hishida T, Yoshida J, Kohno M, Nagai K, Ochiai A (2013). Identification of intravascular tumor microenvironment features predicting the recurrence of pathological stage I lung adenocarcinoma. Cancer Sci, 104(9): 1262–1269PubMedGoogle Scholar
  81. Kawashiri S, Tanaka A, Noguchi N, Hase T, Nakaya H, Ohara T, Kato K, Yamamoto E (2009). Significance of stromal desmoplasia and myofibroblast appearance at the invasive front in squamous cell carcinoma of the oral cavity. Head Neck, 31(10): 1346–1353PubMedGoogle Scholar
  82. Keizer H G, Schuurhuis G J, Broxterman H J, Lankelma J, Schoonen W G, van Rijn J, Pinedo HM, Joenje H (1989). Correlation of multidrug resistance with decreased drug accumulation, altered subcellular drug distribution, and increased P-glycoprotein expression in cultured SW-1573 human lung tumor cells. Cancer Res, 49(11): 2988–2993PubMedGoogle Scholar
  83. Kemp L E, Mulloy B, Gherardi E (2006). Signalling by HGF/SF and Met: the role of heparan sulphate co-receptors. Biochem Soc Trans, 34(Pt 3): 414–417PubMedGoogle Scholar
  84. Khunamornpong S, Lekawanvijit S, Settakorn J, Sukpan K, Suprasert P, Siriaunkgul S (2013). Prognostic model in patients with early-stage squamous cell carcinoma of the uterine cervix: a combination of invasive margin pathological characteristics and lymphovascular space invasion. Asian Pac J Cancer Prev, 14(11): 6935–6940PubMedGoogle Scholar
  85. Kii I, Nishiyama T, Li M, Matsumoto K, Saito M, Amizuka N, Kudo A (2010). Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem, 285(3): 2028–2039PubMedPubMedCentralGoogle Scholar
  86. Kitano H, Kageyama S, Hewitt S M, Hayashi R, Doki Y, Ozaki Y, Fujino S, Takikita M, Kubo H, Fukuoka J (2010). Podoplanin expression in cancerous stroma induces lymphangiogenesis and predicts lymphatic spread and patient survival. Arch Pathol Lab Med, 134(10): 1520–1527PubMedGoogle Scholar
  87. Kojima M, Nakajima K, Ishii G, Saito N, Ochiai A (2010). Peritoneal elastic laminal invasion of colorectal cancer: the diagnostic utility and clinicopathologic relationship. Am J Surg Pathol, 34(9): 1351–1360PubMedGoogle Scholar
  88. Kreuzaler P, Watson C J (2012). Killing a cancer: what are the alternatives? Nat Rev Cancer, 12(6): 411–424PubMedGoogle Scholar
  89. Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf D J, Zhang J, Ratajczak J, Ratajczak M Z (2004). CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol, 35(3): 233–245PubMedGoogle Scholar
  90. Kwon Y, Smith B D, Zhou Y, Kaufman M D, Godwin A K (2013). Effective inhibition of c-MET-mediated signaling, growth and migration of ovarian cancer cells is influenced by the ovarian tissue microenvironment. OncogeneGoogle Scholar
  91. Lari S A, Kuerer H M (2011). Biological Markers in DCIS and Risk of Breast Recurrence: A Systematic Review. J Cancer, 2: 232–261PubMedPubMedCentralGoogle Scholar
  92. Lee S H, Kim H, Hwang J H, Lee H S, Cho J Y, Yoon Y S, Han H S (2012). Breast cancer resistance protein expression is associated with early recurrence and decreased survival in resectable pancreatic cancer patients. Pathol Int, 62(3): 167–175PubMedGoogle Scholar
  93. Lemmon M A, and Schlessinger J (2010). Cell signaling by receptor tyrosine kinases. Cell, 141(7): 1117–1134PubMedPubMedCentralGoogle Scholar
  94. Lengauer C, Kinzler KW, and Vogelstein B (1998). Genetic instabilities in human cancers. Nature, 396(6712): 643–649PubMedGoogle Scholar
  95. Levina V, Marrangoni A M, DeMarco R, Gorelik E, Lokshin A E (2008). Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS ONE, 3(8): e3077PubMedPubMedCentralGoogle Scholar
  96. Lhommé C, Joly F, Walker J L, Lissoni A A, Nicoletto MO, Manikhas G M, Baekelandt M M, Gordon A N, Fracasso P M, Mietlowski W L, Jones G J, Dugan M H (2008). Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J Clin Oncol, 26(16): 2674–2682PubMedGoogle Scholar
  97. Li L, Dragulev B, Zigrino P, Mauch C, Fox J W (2009). The invasive potential of human melanoma cell lines correlates with their ability to alter fibroblast gene expression in vitro and the stromal microenvironment in vivo. Int J Cancer, 125(8): 1796–1804PubMedGoogle Scholar
  98. Li M, Li C, Li D, Xie Y, Shi J, Li G, Guan Y, Li M, Zhang P, Peng F, Xiao Z, Chen Z (2012). Periostin, a stroma-associated protein, correlates with tumor invasiveness and progression in nasopharyngeal carcinoma. Clin Exp Metastasis, 29(8): 865–877PubMedGoogle Scholar
  99. Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld R A (2009). Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS ONE, 4(11): e7965PubMedPubMedCentralGoogle Scholar
  100. Lim K P, Cirillo N, Hassona Y, Wei W, Thurlow J K, Cheong S C, Pitiyage G, Parkinson E K, Prime S S (2011). Fibroblast gene expression profile reflects the stage of tumour progression in oral squamous cell carcinoma. J Pathol, 223(4): 459–469PubMedGoogle Scholar
  101. Liu R, Li J, Xie K, Zhang T, Lei Y, Chen Y, Zhang L, Huang K, Wang K, Wu H, Wu M, Nice E C, Huang C, Wei Y (2013). FGFR4 promotes stroma-induced epithelial-to-mesenchymal transition in colorectal cancer. Cancer Res, 73(19): 5926–5935PubMedGoogle Scholar
  102. Loebinger M R, Giangreco A, Groot K R, Prichard L, Allen K, Simpson C, Bazley L, Navani N, Tibrewal S, Davies D, Janes S M (2008). Squamous cell cancers contain a side population of stem-like cells that are made chemosensitive by ABC transporter blockade. Br J Cancer, 98(2): 380–387PubMedPubMedCentralGoogle Scholar
  103. Lotti F, Jarrar A M, Pai R K, Hitomi M, Lathia J, Mace A, Gantt G A Jr, Sukhdeo K, DeVecchio J, Vasanji A, Leahy P, Hjelmeland A B, Kalady M F, Rich J N (2013). Chemotherapy activates cancerassociated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med, 210(13): 2851–2872PubMedGoogle Scholar
  104. Lu Y, Chen Q, Corey E, Xie W, Fan J, Mizokami A, Zhang J (2009). Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone. Clin Exp Metastasis, 26(2): 161–169PubMedGoogle Scholar
  105. Lu Y, Xiao G, Galson D L, Nishio Y, Mizokami A, Keller E T, Yao Z, Zhang J (2007). PTHrP-induced MCP-1 production by human bone marrow endothelial cells and osteoblasts promotes osteoclast differentiation and prostate cancer cell proliferation and invasion in vitro. Int J Cancer, 121(4): 724–733PubMedGoogle Scholar
  106. Lv Y, Wang W, Jia W D, Sun Q K, Li J S, Ma J L, Liu W B, Zhou H C, Ge Y S, Yu J H, Xia H H, Xu G L (2013). High-level expression of periostin is closely related to metastatic potential and poor prognosis of hepatocellular carcinoma. Med Oncol, 30(1): 385PubMedGoogle Scholar
  107. MacDonald B T, Tamai K, He X (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 17(1): 9–26PubMedPubMedCentralGoogle Scholar
  108. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr H A, Delaloye J F, Huelsken J (2012). Interactions between cancer stem cells and their niche govern metastatic colonization. Nature, 481(7379): 85–89Google Scholar
  109. Malofeeva E V, Domanitskaya N, Gudima M, Hopper-Borge E A (2012). Modulation of the ATPase and transport activities of broadacting multidrug resistance factor ABCC10 (MRP7). Cancer Res, 72(24): 6457–6467PubMedPubMedCentralGoogle Scholar
  110. Marsh D, Suchak K, Moutasim K A, Vallath S, Hopper C, Jerjes W, Upile T, Kalavrezos N, Violette S M, Weinreb P H, Chester K A, Chana J S, Marshall J F, Hart I R, Hackshaw A K, Piper K, Thomas G J (2011). Stromal features are predictive of disease mortality in oral cancer patients. J Pathol, 223(4): 470–481PubMedGoogle Scholar
  111. Masuoka M, Shiraishi H, Ohta S, Suzuki S, Arima K, Aoki S, Toda S, Inagaki N, Kurihara Y, Hayashida S, Takeuchi S, Koike K, Ono J, Noshiro H, Furue M, Conway S J, Narisawa Y, Izuhara K (2012). Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Invest, 122(7): 2590–2600PubMedPubMedCentralGoogle Scholar
  112. Mertens J C, Fingas C D, Christensen J D, Smoot R L, Bronk S F, Werneburg NW, Gustafson MP, Dietz A B, Roberts L R, Sirica A E, Gores G J (2013). Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res, 73(2): 897–907PubMedPubMedCentralGoogle Scholar
  113. Mhawech-Fauceglia P, Wang D, Samrao D, Kim G, Lawrenson K, Meneses T, Liu S, Yessaian A, Pejovic T (2013). Clinical implications of marker expression of carcinoma-associated Fibroblasts (CAFs) in patients with epithelial ovarian carcinoma after treatment with neoadjuvant chemotherapy. Cancer Microenviron, PMID: 24214412Google Scholar
  114. Millward M J, Cantwell B M, Munro N C, Robinson A, Corris P A, Harris A L (1993). Oral verapamil with chemotherapy for advanced non-small cell lung cancer: a randomised study. Br J Cancer, 67(5): 1031–1035PubMedPubMedCentralGoogle Scholar
  115. Mueller L, von Seggern L, Schumacher J, Goumas F, Wilms C, Braun F, Broering D C (2010). TNF-alpha similarly induces IL-6 and MCP-1 in fibroblasts from colorectal liver metastases and normal liver fibroblasts. Biochem Biophys Res Commun, 397(3): 586–591PubMedGoogle Scholar
  116. Naldini L, Weidner K M, Vigna E, Gaudino G, Bardelli A, Ponzetto C, Narsimhan R P, Hartmann G, Zarnegar R, Michalopoulos G K, et al (1991). Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J, 10(10): 2867–2878PubMedPubMedCentralGoogle Scholar
  117. Naumov G N, Townson J L, MacDonald I C, Wilson S M, Bramwell V H, Groom A C, Chambers A F (2003). Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or latedeveloping metastases. Breast Cancer Res Treat, 82(3): 199–206PubMedGoogle Scholar
  118. Nicolo G, Salvi S, Oliveri G, Borsi L, Castellani P, Zardi L (1990). Expression of tenascin and of the ED-B containing oncofetal fibronectin isoform in human cancer. Cell Differ Dev, 32(3): 401–408PubMedGoogle Scholar
  119. Nuzzo P V, Rubagotti A, Zinoli L, Ricci F, Salvi S, Boccardo S, Boccardo F (2012). Prognostic value of stromal and epithelial periostin expression in human prostate cancer: correlation with clinical pathological features and the risk of biochemical relapse or death. BMC Cancer, 12(1): 625PubMedPubMedCentralGoogle Scholar
  120. O’Connell J T, Sugimoto H, Cooke V G, MacDonald B A, Mehta A I, LeBleu V S, Dewar R, Rocha R M, Brentani R R, Resnick M B, Neilson E G, Zeisberg M, Kalluri R (2011). VEGF-A and Tenascin-C produced by S100A4 + stromal cells are important for metastatic colonization. Proc Natl Acad Sci USA, 108(38): 16002–16007PubMedPubMedCentralGoogle Scholar
  121. Oguri T, Ozasa H, Uemura T, Bessho Y, Miyazaki M, Maeno K, Maeda H, Sato S, Ueda R (2008). MRP7/ABCC10 expression is a predictive biomarker for the resistance to paclitaxel in non-small cell lung cancer. Mol Cancer Ther, 7(5): 1150–1155PubMedGoogle Scholar
  122. Ohira S, Sasaki M, Harada K, Sato Y, Zen Y, Isse K, Kozaka K, Ishikawa A, Oda K, Nimura Y, Nakanuma Y (2006). Possible regulation of migration of intrahepatic cholangiocarcinoma cells by interaction of CXCR4 expressed in carcinoma cells with tumor necrosis factor-alpha and stromal-derived factor-1 released in stroma. Am J Pathol, 168(4): 1155–1168PubMedPubMedCentralGoogle Scholar
  123. Ohnishi T, Daikuhara Y (2003). Hepatocyte growth factor/scatter factor in development, inflammation and carcinogenesis: its expression and role in oral tissues. Arch Oral Biol, 48(12): 797–804PubMedGoogle Scholar
  124. Ohno Y, Izumi M, Yoshioka K, Ohori M, Yonou H, Tachibana M (2008). Prognostic significance of tenascin-C expression in clear cell renal cell carcinoma. Oncol Rep, 20(3): 511–516PubMedGoogle Scholar
  125. Olumi A F, Grossfeld G D, Hayward SW, Carroll P R, Tlsty T D, Cunha G R (1999). Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res, 59(19): 5002–5011PubMedGoogle Scholar
  126. Orend G, Chiquet-Ehrismann R (2006). Tenascin-C induced signaling in cancer. Cancer Lett, 244(2): 143–163PubMedGoogle Scholar
  127. Orimo A, Gupta P B, Sgroi D C, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey V J, Richardson A L, Weinberg R A (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121(3): 335–348PubMedGoogle Scholar
  128. Oskarsson T, Acharyya S, Zhang X H, Vanharanta S, Tavazoie S F, Morris P G, Downey R J, Manova-Todorova K, Brogi E, Massagué J (2011). Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med, 17(7): 867–874PubMedGoogle Scholar
  129. Ostman A, Augsten M (2009). Cancer-associated fibroblasts and tumor growth-bystanders turning into key players. Curr Opin Genet Dev, 19(1): 67–73PubMedGoogle Scholar
  130. Parr C, Jiang W G (2001). Expression of hepatocyte growth factor/ scatter factor, its activator, inhibitors and the c-Met receptor in human cancer cells. Int J Oncol, 19(4): 857–863PubMedGoogle Scholar
  131. Paulsson J, Sjöblom T, Micke P, Pontén F, Landberg G, Heldin C H, Bergh J, Brennan D J, Jirström K, Ostman A (2009). Prognostic significance of stromal platelet-derived growth factor beta-receptor expression in human breast cancer. Am J Pathol, 175(1): 334–341PubMedPubMedCentralGoogle Scholar
  132. Peled A, and Tavor S (2013). Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics 3(1), 34–39.PubMedPubMedCentralGoogle Scholar
  133. Pezzolo A, Parodi F, Marimpietri D, Raffaghello L, Cocco C, Pistorio A, Mosconi M, Gambini C, Cilli M, Deaglio S, Malavasi F, Pistoia V (2011). Oct-4 +/Tenascin C + neuroblastoma cells serve as progenitors of tumor-derived endothelial cells. Cell Res, 21(10): 1470–1486PubMedPubMedCentralGoogle Scholar
  134. Polanska U M, Orimo A (2013). Carcinoma-associated fibroblasts: nonneoplastic tumour-promoting mesenchymal cells. J Cell Physiol, 228(8): 1651–1657PubMedGoogle Scholar
  135. Polyak K, Kalluri R (2010). The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb Perspect Biol, 2(11): a003244PubMedPubMedCentralGoogle Scholar
  136. Qian B Z, Li J, Zhang H, Kitamura T, Zhang J, Campion L R, Kaiser E A, Snyder L A, and Pollard J W (2011). CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355), 222–225.PubMedPubMedCentralGoogle Scholar
  137. Qian D Z, Rademacher B L, Pittsenbarger J, Huang C Y, Myrthue A, Higano C S, Garzotto M, Nelson P S, and Beer T M (2010). CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel-induced cytotoxicity. Prostate, 70(4): 433–442PubMedPubMedCentralGoogle Scholar
  138. Roberts P J, and Der C J (2007). Targeting the Raf-MEK-ERK mitogenactivated protein kinase cascade for the treatment of cancer. Oncogene, 26(22): 3291–3310PubMedGoogle Scholar
  139. Roca H, Varsos Z, Pienta K J (2008). CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKTdependent survivin up-regulation. J Biol Chem, 283(36): 25057–25073PubMedPubMedCentralGoogle Scholar
  140. Roninson I B (2003). Tumor cell senescence in cancer treatment. Cancer Res, 63(11): 2705–2715PubMedGoogle Scholar
  141. Samaratunga H, Fairweather P, Purdie D (2005). Significance of stromal reaction patterns in invasive urothelial carcinoma. Am J Clin Pathol, 123(6): 851–857PubMedGoogle Scholar
  142. Sankala H M, Hait N C, Paugh S W, Shida D, Lépine S, Elmore L W, Dent P, Milstien S, Spiegel S (2007). Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Res, 67(21): 10466–10474PubMedGoogle Scholar
  143. Schoppmann S F, Jesch B, Riegler M F, Maroske F, Schwameis K, Jomrich G, Birner P (2013). Podoplanin expressing cancer associated fibroblasts are associated with unfavourable prognosis in adenocarcinoma of the esophagus. Clin Exp Metastasis, 30(4): 441–446PubMedGoogle Scholar
  144. Seslar S P, Nakamura T, Byers S W (1993). Regulation of fibroblast hepatocyte growth factor/scatter factor expression by human breast carcinoma cell lines and peptide growth factors. Cancer Res, 53(6): 1233–1238PubMedGoogle Scholar
  145. Shimao Y, Nabeshima K, Inoue T, Koono M (1999). Role of fibroblasts in HGF/SF-induced cohort migration of human colorectal carcinoma cells: fibroblasts stimulate migration associated with increased fibronectin production via upregulated TGF-beta1. Int J Cancer, 82(3): 449–458PubMedGoogle Scholar
  146. Shinde A V, Frangogiannis N G (2013). Fibroblasts in myocardial infarction: A role in inflammation and repair. J Mol Cell Cardiol, doi: 10.1016/j.yjmcc.2013.11.015Google Scholar
  147. Siegsmund M J, Kreukler C, Steidler A, Nebe T, Köhrmann K U, Alken P (1997). Multidrug resistance in androgen-independent growing rat prostate carcinoma cells is mediated by P-glycoprotein. Urol Res, 25(1): 35–41PubMedGoogle Scholar
  148. Silzle T, Kreutz M, Dobler M A, Brockhoff G, Knuechel R, Kunz-Schughart L A (2003). Tumor-associated fibroblasts recruit blood monocytes into tumor tissue. Eur J Immunol, 33(5): 1311–1320PubMedGoogle Scholar
  149. Smith N Z (2012). Treating metastatic breast cancer with systemic chemotherapies: current trends and future perspectives. Clin J Oncol Nurs, 16(2): E33–E43PubMedGoogle Scholar
  150. Soon P S, Kim E, Pon C K, Gill A J, Moore K, Spillane A J, Benn D E, Baxter R C (2013). Breast cancer-associated fibroblasts induce epithelial-to-mesenchymal transition in breast cancer cells. Endocr Relat Cancer, 20(1): 1–12PubMedGoogle Scholar
  151. Stoker M, Gherardi E, Perryman M, Gray J (1987). Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature, 327(6119): 239–242PubMedGoogle Scholar
  152. Stoker M, Perryman M (1985). An epithelial scatter factor released by embryo fibroblasts. J Cell Sci, 77: 209–223PubMedGoogle Scholar
  153. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian Z R, Du J, Davis A, Mongare M M, Gould J, Frederick D T, Cooper Z A, Chapman P B, Solit D B, Ribas A, Lo R S, Flaherty K T, Ogino S, Wargo J A, Golub T R (2012). Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature, 487(7408): 500–504PubMedPubMedCentralGoogle Scholar
  154. Stupack D G, Cheresh D A (2002). Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci, 115(Pt 19): 3729–3738PubMedGoogle Scholar
  155. Sturm I, Bosanquet A G, Hermann S, Güner D, Dörken B, Daniel P T (2003). Mutation of p53 and consecutive selective drug resistance in B-CLL occurs as a consequence of prior DNA-damaging chemotherapy. Cell Death Differ, 10(4): 477–484PubMedGoogle Scholar
  156. Sun Y, Campisi J, Higano C, Beer T M, Porter P, Coleman I, True L, Nelson P S (2012). Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med, 18(9): 1359–1368PubMedPubMedCentralGoogle Scholar
  157. Takeuchi K, Ito F (2011). Receptor tyrosine kinases and targeted cancer therapeutics. Biol Pharm Bull, 34(12): 1774–1780PubMedGoogle Scholar
  158. Taylor C W, Dalton W S, Parrish P R, Gleason M C, Bellamy W T, Thompson F H, Roe D J, Trent J M (1991). Different mechanisms of decreased drug accumulation in doxorubicin and mitoxantrone resistant variants of the MCF7 human breast cancer cell line. Br J Cancer, 63(6): 923–929PubMedPubMedCentralGoogle Scholar
  159. Tegze B, Szállási Z, Haltrich I, Pénzváltó Z, Tóth Z, Likó I, Gyorffy B (2012). Parallel evolution under chemotherapy pressure in 29 breast cancer cell lines results in dissimilar mechanisms of resistance. PLoS ONE, 7(2): e30804PubMedPubMedCentralGoogle Scholar
  160. Thomas D, Vadas M, Lopez A (2004). Regulation of haematopoiesis by growth factors-emerging insights and therapies. Expert Opin Biol Ther, 4(6): 869–879PubMedGoogle Scholar
  161. Tjomsland V, Niklasson L, Sandström P, Borch K, Druid H, Bratth-ll C, Messmer D, Larsson M, Spångeus A (2011). The desmoplastic stroma plays an essential role in the accumulation and modulation of infiltrated immune cells in pancreatic adenocarcinoma. Clin Dev Immunol, 2011: 212810PubMedPubMedCentralGoogle Scholar
  162. Torres S, Bartolomé R A, Mendes M, Barderas R, Fernandez-AceñeroM J, Peláez-García A, Peña C, Lopez-Lucendo M, Villar-Vázquez R, de Herreros A G, Bonilla F, Casal J I (2013). Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res, 19(21): 6006–6019PubMedGoogle Scholar
  163. Tsujino T, Seshimo I, Yamamoto H, Ngan C Y, Ezumi K, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Monden M (2007). Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res, 13(7): 2082–2090PubMedGoogle Scholar
  164. Tsuyada A, Chow A, Wu J, Somlo G, Chu P, Loera S, Luu T, Li A X, Wu X, Ye W, Chen S, Zhou W, Yu Y, Wang Y Z, Ren X, Li H, Scherle P, Kuroki Y, Wang S E (2012). CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res, 72(11): 2768–2779PubMedPubMedCentralGoogle Scholar
  165. Uchida D, Kawamata H, Omotehara F, Nakashiro Ki, Kimura-Yanagawa T, Hino S, Begum N M, Hoque M O, Yoshida H, Sato M, Fujimori T (2001). Role of HGF/c-met system in invasion and metastasis of oral squamous cell carcinoma cells in vitro and its clinical significance. Int J Cancer, 93(4): 489–496PubMedGoogle Scholar
  166. van Leenders G J, Sookhlall R, TeubelW J, de Ridder C M, Reneman S, Sacchetti A, Vissers K J, van Weerden W, Jenster G (2011). Activation of c-MET induces a stem-like phenotype in human prostate cancer. PLoS ONE, 6(11): e26753PubMedPubMedCentralGoogle Scholar
  167. Vermeulen L, De Sousa E Melo F, van der Heijden M, Cameron K, de Jong J H, Borovski T, Tuynman J B, Todaro M, Merz C, Rodermond H, Sprick M R, Kemper K, Richel D J, Stassi G, Medema J P (2010). Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol, 12(5): 468–476PubMedGoogle Scholar
  168. Wang B, Liu K, Lin H Y, Bellam N, Ling S, LinW C (2010). 14-3-3Tau regulates ubiquitin-independent proteasomal degradation of p21, a novel mechanism of p21 downregulation in breast cancer. Mol Cell Biol, 30(6): 1508–1527PubMedPubMedCentralGoogle Scholar
  169. Wang P, Nishitani M A, Tanimoto S, Kishimoto T, Fukumori T, Takahashi M, and Kanayama H O (2007). Bladder cancer cell invasion is enhanced by cross-talk with fibroblasts through hepatocyte growth factor. Urology, 69(4): 780–784PubMedGoogle Scholar
  170. Wang Q, Fiel M I, Blank S, Luan W, Kadri H, Kim K W, Manizate F, Rosenblatt A G, Labow D M, Schwartz M E, Hiotis S P (2013). Impact of liver fibrosis on prognosis following liver resection for hepatitis B-associated hepatocellular carcinoma. Br J Cancer, 109(3): 573–581PubMedGoogle Scholar
  171. Wang W, Li Q, Yamada T, Matsumoto K, Matsumoto I, Oda M, Watanabe G, Kayano Y, Nishioka Y, Sone S, Yano S (2009). Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res, 15(21): 6630–6638PubMedGoogle Scholar
  172. Wartenberg M, Frey C, Diedershagen H, Ritgen J, Hescheler J, Sauer H (1998). Development of an intrinsic P-glycoprotein-mediated doxorubicin resistance in quiescent cell layers of large, multicellular prostate tumor spheroids. Int J Cancer, 75(6): 855–863PubMedGoogle Scholar
  173. White G E, Iqbal A J, Greaves D R (2013). CC chemokine receptors and chronic inflammation-therapeutic opportunities and pharmacological challenges. Pharmacol Rev, 65(1): 47–89PubMedGoogle Scholar
  174. Wilson K J, Mill C, Lambert S, Buchman J, Wilson T R, Hernandez-Gordillo V, Gallo R M, Ades L M, Settleman J, Riese D J 2nd (2012a). EGFR ligands exhibit functional differences in models of paracrine and autocrine signaling. Growth Factors, 30(2): 107–116PubMedPubMedCentralGoogle Scholar
  175. Wilson T R, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A, Li J, Moffat J, Sutherlin D P, Koeppen H, Merchant M, Neve R, and Settleman J (2012b). Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature, 487(7408): 505–509PubMedPubMedCentralGoogle Scholar
  176. Wishart G C, Bissett D, Paul J, Jodrell D, Harnett A, Habeshaw T, Kerr D J, Macham M A, Soukop M, Leonard R C, et al (1994). Quinidine as a resistance modulator of epirubicin in advanced breast cancer: mature results of a placebo-controlled randomized trial. J Clin Oncol, 12(9): 1771–1777PubMedGoogle Scholar
  177. Wong M P, Cheung K N, Yuen S T, Fu K H, Chan A S, Leung S Y, Chung L P (1998). Monocyte chemoattractant protein-1 (MCP-1) expression in primary lymphoepithelioma-like carcinomas (LELCs) of the lung. J Pathol, 186(4): 372–377PubMedGoogle Scholar
  178. Wu K J (2011). Direct activation of Bmi1 by Twist1: implications in cancer stemness, epithelial-mesenchymal transition, and clinical significance. Chang Gung Med J, 34(3): 229–238PubMedGoogle Scholar
  179. Wu MH, Hong H C, Hong TM, Chiang WF, Jin Y T, Chen Y L (2011). Targeting galectin-1 in carcinoma-associated fibroblasts inhibits oral squamous cell carcinoma metastasis by downregulating MCP-1/CCL2 expression. Clin Cancer Res, 17(6): 1306–1316PubMedGoogle Scholar
  180. Xiong J, Balcioglu H E, Danen E H (2013). Integrin signaling in control of tumor growth and progression. Int J Biochem Cell Biol, 45(5): 1012–1015PubMedGoogle Scholar
  181. Xu D, Xu H, Ren Y, Liu C, Wang X, Zhang H, Lu P (2012). Cancer stem cell-related gene periostin: a novel prognostic marker for breast cancer. PLoS ONE, 7(10): e46670PubMedPubMedCentralGoogle Scholar
  182. Yamada T, Matsumoto K, Wang W, Li Q, Nishioka Y, Sekido Y, Sone S, Yano S (2010). Hepatocyte growth factor reduces susceptibility to an irreversible epidermal growth factor receptor inhibitor in EGFRT790M mutant lung cancer. Clin Cancer Res, 16(1): 174–183PubMedGoogle Scholar
  183. Yasunaga M, Yamasaki F, Tokunaga O, Iwasaka T (2003). Endometrial carcinomas with lymph node involvement: novel histopathologic factors for predicting prognosis. Int J Gynecol Pathol, 22(4): 341–346PubMedGoogle Scholar
  184. Yoshida S, Harada T, Iwabe T, Taniguchi F, Fujii A, Sakamoto Y, Yamauchi N, Shiota G, Terakawa N (2002). Induction of hepatocyte growth factor in stromal cells by tumor-derived basic fibroblast growth factor enhances growth and invasion of endometrial cancer. J Clin Endocrinol Metab, 87(5): 2376–2383PubMedGoogle Scholar
  185. Yu S, Xia S, Yang D, Wang K, Yeh S, Gao Z, Chang C (2013). Androgen receptor in human prostate cancer-associated fibroblasts promotes prostate cancer epithelial cell growth and invasion. Med Oncol, 30(3): 674PubMedGoogle Scholar
  186. Zhang J, Yang P L, Gray N S (2009). Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer, 9(1): 28–39PubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations