Advertisement

Frontiers in Biology

, Volume 9, Issue 1, pp 18–34 | Cite as

Structural biology of the macroautophagy machinery

  • Leon H. Chew
  • Calvin K. Yip
Review

Abstract

Macroautophagy is a conserved degradative process mediated through formation of a unique doublemembrane structure, the autophagosome. The discovery of autophagy-related (Atg) genes required for autophagosome formation has led to the characterization of approximately 20 genes mediating this process. Recent structural studies of the Atg proteins have provided the molecular basis for their function. Here we summarize the recent progress in elucidating the structural basis for autophagosome formation.

Keywords

macroautophagy autophagy Atg proteins structural biology X-ray crystallography single-particle electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aita V M, Liang X H, Murty V V, Pincus D L, Yu W, Cayanis E, Kalachikov S, Gilliam T C, Levine B (1999). Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics, 59(1): 59–65PubMedGoogle Scholar
  2. Araki Y, Ku W C, Akioka M, May A I, Hayashi Y, Arisaka F, Ishihama Y, Ohsumi Y (2013). Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. J Cell Biol, 203(2): 299–313PubMedGoogle Scholar
  3. Ashrafi G, Schwarz T L (2013). The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ, 20(1): 31–42PubMedGoogle Scholar
  4. Axe E L, Walker S A, Manifava M, Chandra P, Roderick H L, Habermann A, Griffiths G, Ktistakis N T (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 182(4): 685–701PubMedGoogle Scholar
  5. Baskaran S, Ragusa M J, Boura E, Hurley J H (2012). Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol Cell, 47(3): 339–348PubMedCentralPubMedGoogle Scholar
  6. Birgisdottir A B, Lamark T, Johansen T (2013). The LIR motif —crucial for selective autophagy. J Cell Sci, 126(Pt 15): 3237–3247PubMedGoogle Scholar
  7. Burda P, Padilla S M, Sarkar S, Emr S D (2002). Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci, 115(Pt 20): 3889–3900PubMedGoogle Scholar
  8. Chan E Y W, Longatti A, McKnight N C, Tooze S A (2009). Kinaseinactivated ULK proteins inhibit autophagy via their conserved Cterminal domains using an Atg13-independent mechanism. Mol Cell Biol, 29(1): 157–171PubMedCentralPubMedGoogle Scholar
  9. Cheong H, Nair U, Geng J, Klionsky D J (2008). The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell, 19(2): 668–681PubMedCentralPubMedGoogle Scholar
  10. Cheong H, Yorimitsu T, Reggiori F, Legakis J E, Wang CW, Klionsky D J (2005). Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell, 16(7): 3438–3453PubMedCentralPubMedGoogle Scholar
  11. Chew L H, Setiaputra D, Klionsky D J, Yip C K (2013). Structural characterization of the Saccharomyces cerevisiae autophagy regulatory complex Atg17-Atg31-Atg29. Autophagy, 9: 1467–1474Google Scholar
  12. Choi A M K, Ryter S W, Levine B (2013). Autophagy in human health and disease. N Engl J Med, 368(7): 651–662PubMedGoogle Scholar
  13. Coyle J E, Qamar S, Rajashankar K R, Nikolov D B (2002). Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Neuron, 33(1): 63–74PubMedGoogle Scholar
  14. Dove S K, Piper R C, McEwen R K, Yu J W, King M C, Hughes D C, Thuring J, Holmes A B, Cooke F T, Michell R H, Parker P J, Lemmon M A (2004). Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J, 23(9): 1922–1933PubMedGoogle Scholar
  15. Fan W, Nassiri A, Zhong Q (2011). Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci USA, 108(19): 7769–7774PubMedGoogle Scholar
  16. Feng W, Huang S, Wu H, Zhang M (2007). Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol, 372(1): 223–235PubMedGoogle Scholar
  17. Fogel A I, Dlouhy B J, Wang C, Ryu S W, Neutzner A, Hasson S A, Sideris D P, Abeliovich H, Youle R J (2013). Role of membrane association and Atg14-dependent phosphorylation in beclin-1-mediated autophagy. Mol Cell Biol, 33(18): 3675–3688PubMedGoogle Scholar
  18. Fujioka Y, Noda N N, Nakatogawa H, Ohsumi Y, Inagaki F (2010). Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J Biol Chem, 285(2): 1508–1515PubMedGoogle Scholar
  19. Furuya N, Yu J, Byfield M, Pattingre S, Levine B (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy, 1(1): 46–52PubMedGoogle Scholar
  20. Gammoh N, Florey O, Overholtzer M, Jiang X (2013). Interaction between FIP200 and ATG16L1 distinguishes ULK1 complexdependent and -independent autophagy. Nat Struct Mol Biol, 20(2): 144–149PubMedCentralPubMedGoogle Scholar
  21. Ganley I G, Lam H, Wang J, Ding X, Chen S, Jiang X (2009). ULK1. ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 284(18): 12297–12305PubMedGoogle Scholar
  22. Gaugel A, Bakula D, Hoffmann A, Proikas-Cezanne T (2012). Defining regulatory and phosphoinositide-binding sites in the human WIPI-1 β-propeller responsible for autophagosomal membrane localization downstream of mTORC1 inhibition. J Mol Signal, 7(1): 16PubMedCentralPubMedGoogle Scholar
  23. Hailey D W, Rambold A S, Satpute-Krishnan P, Mitra K, Sougrat R, Kim P K, Lippincott-Schwartz J (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 141(4): 656–667PubMedCentralPubMedGoogle Scholar
  24. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, Noda T, Haraguchi T, Hiraoka Y, Amano A, Yoshimori T (2013). Autophagosomes form at ER-mitochondria contact sites. Nature, 495(7441): 389–393PubMedGoogle Scholar
  25. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol, 11(12): 1433–1437PubMedGoogle Scholar
  26. Heenan E J, Vanhooke J L, Temple B R, Betts L, Sondek J E, Dohlman H G (2009). Structure and function of Vps15 in the endosomal G protein signaling pathway. Biochemistry, 48(27): 6390–6401PubMedCentralPubMedGoogle Scholar
  27. Hong S B, Kim B W, Kim J H, Song H K (2012). Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr D Biol Crystallogr, 68(Pt 10): 1409–1417PubMedGoogle Scholar
  28. Hong S B, Kim B W, Lee K E, Kim S W, Jeon H, Kim J, Song H K (2011). Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat Struct Mol Biol, 18(12): 1323–1330PubMedGoogle Scholar
  29. Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N (2009). Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy, 5(7): 973–979PubMedGoogle Scholar
  30. Huang W, Choi W, Hu W, Mi N, Guo Q, Ma M, Liu M, Tian Y, Lu P, Wang F L, Deng H, Liu L, Gao N, Yu L, Shi Y (2012). Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell Res, 22(3): 473–489PubMedGoogle Scholar
  31. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y (2000). A ubiquitin-like system mediates protein lipidation. Nature, 408(6811): 488–492PubMedGoogle Scholar
  32. Itakura E, Kishi C, Inoue K, Mizushima N (2008). Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell, 19(12): 5360–5372PubMedCentralPubMedGoogle Scholar
  33. Jao C C, Ragusa M J, Stanley R E, Hurley J H (2013). A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. Proc Natl Acad Sci USA, 110(14): 5486–5491PubMedGoogle Scholar
  34. Kabeya Y, Kamada Y, Baba M, Takikawa H, Sasaki M, Ohsumi Y (2005). Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell, 16(5): 2544–2553PubMedCentralPubMedGoogle Scholar
  35. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004). LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci, 117(Pt 13): 2805–2812PubMedGoogle Scholar
  36. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19: 5720–5728PubMedGoogle Scholar
  37. Kabeya Y, Noda N N, Fujioka Y, Suzuki K, Inagaki F, Ohsumi Y (2009). Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 389(4): 612–615PubMedGoogle Scholar
  38. Kaiser S E, Mao K, Taherbhoy A M, Yu S, Olszewski J L, Duda D M, Kurinov I, Deng A, Fenn T D, Klionsky D J, Schulman B A (2012). Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol, 19(12): 1242–1249PubMedCentralPubMedGoogle Scholar
  39. Kakuta S, Yamamoto H, Negishi L, Kondo-Kakuta C, Hayashi N, Ohsumi Y (2012). Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site. J Biol Chem, 287(53): 44261–44269PubMedGoogle Scholar
  40. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol, 150(6): 1507–1513PubMedGoogle Scholar
  41. Karanasios E, Stapleton E, Manifava M, Kaizuka T, Mizushima N, Walker S A, Ktistakis N T (2013). Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J Cell Sci, 126(Pt 22): 5224–5238PubMedGoogle Scholar
  42. Kihara A, Noda T, Ishihara N, Ohsumi Y (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol, 152, 519–30PubMedGoogle Scholar
  43. Kijanska M, Dohnal I, Reiter W, Kaspar S, Stoffel I, Ammerer G, Kraft C, Peter M (2010). Activation of Atg1 kinase in autophagy by regulated phosphorylation. Autophagy, 6(8): 1168–1178PubMedGoogle Scholar
  44. Kim J, Kundu M, Viollet B, Guan K L (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 13(2): 132–141PubMedGoogle Scholar
  45. Knight D, Harris R, McAlister M S B, Phelan J P, Geddes S, Moss S J, Driscoll P C, Keep N H (2002). The X-ray crystal structure and putative ligand-derived peptide binding properties of gammaaminobutyric acid receptor type A receptor-associated protein. J Biol Chem, 277(7): 5556–5561PubMedGoogle Scholar
  46. Kobayashi T, Suzuki K, Ohsumi Y (2012). Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2. FEBS Lett, 586(16): 2473–2478PubMedGoogle Scholar
  47. Kondo-Okamoto N, Noda N N, Suzuki S W, Nakatogawa H, Takahashi I, Matsunami M, Hashimoto A, Inagaki F, Ohsumi Y, Okamoto K (2012). Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J Biol Chem, 287(13): 10631–10638PubMedGoogle Scholar
  48. Kraft C, Deplazes A, Sohrmann M, Peter M (2008). Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol, 10(5): 602–610PubMedGoogle Scholar
  49. Kraft C, Kijanska M, Kalie E, Siergiejuk E, Lee S S, Semplicio G, Stoffel I, Brezovich A, Verma M, Hansmann I, Ammerer G, Hofmann K, Tooze S, Peter M (2012). Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J, 31(18): 3691–3703PubMedGoogle Scholar
  50. Krick R, Busse R A, Scacioc A, Stephan M, Janshoff A, Thumm M, Kühnel K (2012). Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a β-propeller protein family. Proc Natl Acad Sci USA, 109(30): E2042–E2049PubMedGoogle Scholar
  51. Krick R, Muehe Y, Prick T, Bremer S, Schlotterhose P, Eskelinen E L, Millen J, Goldfarb D S, Thumm M (2008). Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell, 19(10): 4492–4505PubMedCentralPubMedGoogle Scholar
  52. Ku B, Woo J S, Liang C, Lee K H, Hong H S, e X, Kim K S, Jung J U, Oh B H (2008). Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gammaherpesvirus 68. PLoS Pathog, 4(2): e25PubMedCentralPubMedGoogle Scholar
  53. Kuma A, Mizushima N, Ishihara N, Ohsumi Y (2002). Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem, 277(21): 18619–18625PubMedGoogle Scholar
  54. Kumanomidou T, Mizushima T, Komatsu M, Suzuki A, Tanida I, Sou Y S, Ueno T, Kominami E, Tanaka K, Yamane T (2006). The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J Mol Biol, 355(4): 612–618PubMedGoogle Scholar
  55. Kumeta H, Watanabe M, Nakatogawa H, Yamaguchi M, Ogura K, Adachi W, Fujioka Y, Noda N N, Ohsumi Y, Inagaki F (2010). The NMR structure of the autophagy-related protein Atg8. J Biomol NMR, 47(3): 237–241PubMedGoogle Scholar
  56. Lamb C A, Yoshimori T, Tooze S A (2013). The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol, 14(12): 759–774PubMedGoogle Scholar
  57. Li X, He L, Che K H, Funderburk S F, Pan L, Pan N, Zhang M, Yue Z, Zhao Y (2012). Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat Commun, 3: 662PubMedCentralPubMedGoogle Scholar
  58. Liang X H, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762): 672–676PubMedGoogle Scholar
  59. Liang X H, Kleeman L K, Jiang H H, Gordon G, Goldman J E, Berry G, Herman B, Levine B (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol, 72(11): 8586–8596PubMedCentralPubMedGoogle Scholar
  60. Lipatova Z, Belogortseva N, ZhangX Q, Kim J, Taussig D, Segev N (2012). Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc Natl Acad Sci U S A, 109: 6981–6986PubMedCentralPubMedGoogle Scholar
  61. Liu K, Czaja M J (2013). Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ, 20(1): 3–11PubMedGoogle Scholar
  62. Liu X, Dai S, Zhu Y, Marrack P, Kappler J W (2003). The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity, 19(3): 341–352PubMedGoogle Scholar
  63. Mao K, Chew L H, Inoue-Aono Y, Cheong H, Nair U, Popelka H, Yip C K, Klionsky D J (2013). Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci USA, 110(31): E2875–E2884PubMedGoogle Scholar
  64. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol, 11(4): 385–396PubMedGoogle Scholar
  65. Matsushita M, Suzuki N N, Obara K, Fujioka Y, Ohsumi Y, Inagaki F (2007). Structure of Atg5.Atg16, a complex essential for autophagy. J Biol Chem, 282(9): 6763–6772PubMedGoogle Scholar
  66. Matsuura A, Tsukada M, Wada Y, Ohsumi Y (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192, 245–250PubMedGoogle Scholar
  67. Mauthe M, Jacob A, Freiberger S, Hentschel K, Stierhof Y D, Codogno P, Proikas-Cezanne T (2011). Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy, 7(12): 1448–1461PubMedGoogle Scholar
  68. Meiling-Wesse K, Barth H, Voss C, Eskelinen E L, Epple U D, Thumm M (2004). Atg21 is required for effective recruitment of Atg8 to the preautophagosomal structure during the Cvt pathway. J Biol Chem, 279(36): 37741–37750PubMedGoogle Scholar
  69. Mercer C A, Kaliappan A, Dennis P B (2009). A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 5(5): 649–662PubMedGoogle Scholar
  70. Metlagel Z, Otomo C, Takaesu G, Otomo T (2013). Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proc Natl Acad Sci USA, 110(47): 18844–18849PubMedGoogle Scholar
  71. Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman B T, Shokat K M, Williams R L (2010). Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science, 327(5973): 1638–1642PubMedCentralPubMedGoogle Scholar
  72. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George M D, Klionsky D J, Ohsumi M, Ohsumi Y (1998). A protein conjugation system essential for autophagy. Nature, 395(6700): 395–398PubMedGoogle Scholar
  73. Mizushima N, Yoshimori T, Ohsumi Y (2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 27(1): 107–132PubMedGoogle Scholar
  74. Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein D C (2011). Autophagosome precursor maturation requires homotypic fusion. Cell, 146(2): 303–317PubMedCentralPubMedGoogle Scholar
  75. Moreau K, Renna M, Rubinsztein D C (2013). Connections between SNAREs and autophagy. Trends Biochem Sci, 38(2): 57–63PubMedGoogle Scholar
  76. Nair U, Jotwani A, Geng J, Gammoh N, Richerson D, Yen W L, Griffith J, Nag S, Wang K, Moss T, Baba M, McNew J A, Jiang X, Reggiori F, Melia T J, Klionsky D J (2011). SNARE proteins are required for macroautophagy. Cell, 146(2): 290–302PubMedCentralPubMedGoogle Scholar
  77. Nair U, Yen W L, Mari M, Cao Y, Xie Z, Baba M, Reggiori F, Klionsky D J (2012). A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy, 8(5): 780–793PubMedGoogle Scholar
  78. Nakatogawa H, Ichimura Y, Ohsumi Y (2007). Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell, 130(1): 165–178PubMedGoogle Scholar
  79. Nakatogawa H, Ishii J, Asai E, Ohsumi Y (2012). Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy, 8(2): 1–10Google Scholar
  80. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 10(7): 458–467PubMedGoogle Scholar
  81. Nishimura T, Kaizuka T, Cadwell K, Sahani M H, Saitoh T, Akira S, Virgin H W, Mizushima N (2013). FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep, 14(3): 284–291PubMedGoogle Scholar
  82. Noda N N, Fujioka Y, Hanada T, Ohsumi Y, Inagaki F (2013). Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep, 14(2): 206–211PubMedCentralPubMedGoogle Scholar
  83. Noda N N, Kobayashi T, Adachi W, Fujioka Y, Ohsumi Y, Inagaki F (2012). Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. J Biol Chem, 287(20): 16256–16266PubMedGoogle Scholar
  84. Noda N N, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F (2008). Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells, 13(12): 1211–1218PubMedGoogle Scholar
  85. Noda N N, Ohsumi Y, Inagaki F (2009). ATG systems from the protein structural point of view. Chem Rev, 109(4): 1587–1598PubMedGoogle Scholar
  86. Noda N N, Satoo K, Fujioka Y, Kumeta H, Ogura K, Nakatogawa H, Ohsumi Y, Inagaki F (2011). Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell, 44(3): 462–475PubMedGoogle Scholar
  87. Noda T, Kim J, Huang W P, Baba M, Tokunaga C, Ohsumi Y, Klionsky D J (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol, 148(3): 465–480PubMedGoogle Scholar
  88. Noda T, Matsunaga K, Taguchi-Atarashi N, Yoshimori T (2010). Regulation of membrane biogenesis in autophagy via PI3P dynamics. Semin Cell Dev Biol, 21(7): 671–676PubMedGoogle Scholar
  89. Obara K, Noda T, Niimi K, Ohsumi Y (2008a). Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae. Genes Cells, 13(6): 537–547PubMedGoogle Scholar
  90. Obara K, Sekito T, Niimi K, Ohsumi Y (2008b). The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem, 283(35): 23972–23980PubMedGoogle Scholar
  91. Obara K, Sekito T, Ohsumi Y (2006). Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell, 17(4): 1527–1539PubMedCentralPubMedGoogle Scholar
  92. Oberstein A, Jeffrey P D, Shi Y (2007). Crystal structure of the Bcl-XLBeclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem, 282(17): 13123–13132PubMedGoogle Scholar
  93. Otomo C, Metlagel Z, Takaesu G, Otomo T (2013). Structure of the human ATG12∼ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol, 20(1): 59–66PubMedCentralPubMedGoogle Scholar
  94. Panaretou C, Domin J, Cockcroft S, Waterfield M D (1997). Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem, 272(4): 2477–2485PubMedGoogle Scholar
  95. Paz Y, Elazar Z, Fass D (2000). Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p. J Biol Chem, 275(33): 25445–25450PubMedGoogle Scholar
  96. Petros A M, Nettesheim D G, Wang Y, Olejniczak E T, Meadows R P, Mack J, Swift K, Matayoshi E D, Zhang H, Thompson C B, Fesik S W(2010). Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci, 9: 2528–2534Google Scholar
  97. Polson H E J, de Lartigue J, Rigden D J, Reedijk M, Urbé S, Clague MJ, Tooze S A (2010). Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy, 6(4): 506–522PubMedGoogle Scholar
  98. Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A (2004). WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene, 23(58): 9314–9325PubMedGoogle Scholar
  99. Puri C, Renna M, Bento C F, Moreau K, Rubinsztein D C (2013). Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell, 154(6): 1285–1299PubMedCentralPubMedGoogle Scholar
  100. Ragusa M J, Stanley R E, Hurley J H (2012). Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell, 151(7): 1501–1512PubMedCentralPubMedGoogle Scholar
  101. Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein D C (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol, 12(8): 747–757PubMedCentralPubMedGoogle Scholar
  102. Reggiori F, Klionsky D J (2013). Autophagic processes in yeast: mechanism, machinery and regulation. Genetics, 194(2): 341–361PubMedGoogle Scholar
  103. Reggiori F, Tucker K A, Stromhaug P E, Klionsky D J (2004). The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell, 6(1): 79–90PubMedGoogle Scholar
  104. Renner L D, Weibel D B (2011). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci USA, 108(15): 6264–6269PubMedGoogle Scholar
  105. Rieter E, Vinke F, Bakula D, Cebollero E, Ungermann C, Proikas-Cezanne T, Reggiori F (2013). Atg18 function in autophagy is regulated by specific sites within its β-propeller. J Cell Sci, 126(Pt 2): 593–604PubMedGoogle Scholar
  106. Romanov J, Walczak M, Ibiricu I, Schüchner S, Ogris E, Kraft C, Martens S (2012). Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J, 31: 4304–4317PubMedGoogle Scholar
  107. Sattler M, Liang H, Nettesheim D, Meadows R P, Harlan J E, Eberstadt M, Yoon H S, Shuker S B, Chang B S, Minn A J, Thompson C B, Fesik S W (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science, 275: 983–986PubMedGoogle Scholar
  108. Satoo K, Noda N N, Kumeta H, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F (2009). The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J, 28(9): 1341–1350PubMedGoogle Scholar
  109. Schwarten M, Stoldt M, Mohrlüder J, Willbold D (2010). Solution structure of Atg8 reveals conformational polymorphism of the Nterminal domain. Biochem Biophys Res Commun, 395(3): 426–431PubMedGoogle Scholar
  110. Seglen P O, Gordon P B (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA, 79(6): 1889–1892PubMedGoogle Scholar
  111. Sekito T, Kawamata T, Ichikawa R, Suzuki K, Ohsumi Y (2009). Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells, 14(5): 525–538PubMedGoogle Scholar
  112. Sironi L, Mapelli M, Knapp S, De Antoni A, Jeang K T, Musacchio A (2002). Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. EMBO J, 21(10): 2496–2506PubMedGoogle Scholar
  113. Strfmhaug P E, Reggiori F, Guan J, Wang C W, Klionsky D J (2004). Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell, 15(8): 3553–3566Google Scholar
  114. Sugawara K, Suzuki N N, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F (2004). The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells, 9(7): 611–618PubMedGoogle Scholar
  115. Sugawara K, Suzuki N N, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F (2005). Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J Biol Chem, 280(48): 40058–40065PubMedGoogle Scholar
  116. Sun L L, Li M, Suo F, Liu X M, Shen E Z, Yang B, Dong M Q, He W Z, Du L L (2013). Global analysis of fission yeast mating genes reveals new autophagy factors. PLoS Genet, 9(8): e1003715PubMedCentralPubMedGoogle Scholar
  117. Suzuki K (2013). Selective autophagy in budding yeast. Cell Death Differ, 20(1): 43–48PubMedGoogle Scholar
  118. Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells, 12(2): 209–218PubMedGoogle Scholar
  119. Suzuki K, Ohsumi Y (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett, 581(11): 2156–2161PubMedGoogle Scholar
  120. Suzuki N N, Yoshimoto K, Fujioka Y, Ohsumi Y, Inagaki F (2005). The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy, 1(2): 119–126PubMedGoogle Scholar
  121. Taherbhoy AM, Tait SW, Kaiser S E, Williams A H, Deng A, Nourse A, Hammel M, Kurinov I, Rock C O, Green D R, Schulman B A (2011). Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol Cell, 44(3): 451–461PubMedCentralPubMedGoogle Scholar
  122. Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol, 119(2): 301–311PubMedGoogle Scholar
  123. Tsukada M, Ohsumi Y (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 333(1–2): 169–174PubMedGoogle Scholar
  124. Watanabe Y, Kobayashi T, Yamamoto H, Hoshida H, Akada R, Inagaki F, Ohsumi Y, Noda N N (2012). Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J Biol Chem, 287(38): 31681–31690PubMedGoogle Scholar
  125. Weidberg H, Shpilka T, Shvets E, Abada A, Shimron F, Elazar Z (2011a). LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell, 20(4): 444–454PubMedGoogle Scholar
  126. Weidberg H, Shvets E, Elazar Z (2011b). Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem, 80(1): 125–156PubMedGoogle Scholar
  127. Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z (2010). LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J, 29(11): 1792–1802PubMedGoogle Scholar
  128. Wu Y T, Tan H L, Shui G, Bauvy C, Huang Q, Wenk M R, Ong C N, Codogno P, Shen H M (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem, 285(14): 10850–10861PubMedGoogle Scholar
  129. Xie Z, Nair U, Klionsky D J (2008). Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell, 19(8): 3290–3298PubMedCentralPubMedGoogle Scholar
  130. Yamada Y, Suzuki N N, Hanada T, Ichimura Y, Kumeta H, Fujioka Y, Ohsumi Y, Inagaki F (2007). The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J Biol Chem, 282(11): 8036–8043PubMedGoogle Scholar
  131. Yamaguchi M, Matoba K, Sawada R, Fujioka Y, Nakatogawa H, Yamamoto H, Kobashigawa Y, Hoshida H, Akada R, Ohsumi Y, Noda N N, Inagaki F (2012a). Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat Struct Mol Biol, 19(12): 1250–1256PubMedGoogle Scholar
  132. Yamaguchi M, Noda N N, Nakatogawa H, Kumeta H, Ohsumi Y, Inagaki F (2010). Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J Biol Chem, 285(38): 29599–29607PubMedGoogle Scholar
  133. Yamaguchi M, Noda N N, Yamamoto H, Shima T, Kumeta H, Kobashigawa Y, Akada R, Ohsumi Y, Inagaki F (2012b). Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure, 20(7): 1244–1254PubMedGoogle Scholar
  134. Yamamoto H, Kakuta S, Watanabe T M, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol, 198(2): 219–233PubMedGoogle Scholar
  135. Yeh Y Y, Shah K H, Chou C C, Hsiao H H, Wrasman K M, Stephan J S, Stamatakos D, Khoo K H, Herman P K (2011). The identification and analysis of phosphorylation sites on the Atg1 protein kinase. Autophagy, 7: 716–726PubMedGoogle Scholar
  136. Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen E L (2009). 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy, 5(8): 1180–1185PubMedGoogle Scholar
  137. Yu Z Q, Ni T, Hong B, Wang H Y, Jiang F J, Zou S, Chen Y, Zheng X L, Klionsky D J, Liang Y, Xie Z (2012). Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy, 8(6): 1–10Google Scholar
  138. Zhong Y, Wang Q J, Li X, Yan Y, Backer J M, Chait B T, Heintz N, Yue Z (2009). Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol, 11(4): 468–476PubMedCentralPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyThe University of British ColumbiaVancouverCanada

Personalised recommendations