Frontiers in Biology

, Volume 9, Issue 1, pp 5–17 | Cite as

Cytoskeletal changes in diseases of the nervous system



The neuronal cytoskeleton not only provides the structural backbone of neurons, but also plays a fundamental role in maintaining neuronal functions. Dysregulation of neuronal architecture is evident in both injury and diseases of the central nervous system. These changes often result in the disruption of protein trafficking, loss of synapses and the death of neurons, ultimately impacting on signal transmission and manifesting in the disease phenotype. Furthermore, mutations in cytoskeletal proteins have been implicated in numerous diseases and, in some cases, identified as the cause of the disease, highlighting the critical role of the cytoskeleton in disease pathology. This review focuses on the role of cytoskeletal proteins in the pathology of mental disorders, neurodegenerative diseases and motor function deficits. In particular, we illustrate how cytoskeletal proteins can be directly linked to disease pathology and progression.


cytoskeleton actin, microtubules intermediate filaments nervous system disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Chalabi A, Andersen P M, Nilsson P, Chioza B, Andersson J L, Russ C, Shaw C E, Powell J F, Leigh P N (1999). Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet, 8(2): 157–164PubMedGoogle Scholar
  2. Anderson S A, Volk D W, Lewis D A (1996). Increased density of microtubule associated protein 2-immunoreactive neurons in the prefrontal white matter of schizophrenic subjects. Schizophr Res, 19(2–3): 111–119PubMedGoogle Scholar
  3. Andrianantoandro E, Pollard T D (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell, 24(1): 13–23PubMedGoogle Scholar
  4. Andrieux A, Salin P A, Vernet M, Kujala P, Baratier J, Gory-Fauré S, Bosc C, Pointu H, Proietto D, Schweitzer A, Denarier E, Klumperman J, Job D (2002). The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev, 16(18): 2350–2364PubMedGoogle Scholar
  5. Arber S, Barbayannis F A, Hanser H, Schneider C, Stanyon C A, Bernard O, Caroni P (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature, 393(6687): 805–809PubMedGoogle Scholar
  6. Armstrong R A, Cairns N J (2012). Different molecular pathologies result in similar spatial patterns of cellular inclusions in neurode-generative disease: a comparative study of eight disorders. J Neural Transm, 119(12): 1551–1560PubMedGoogle Scholar
  7. Armstrong R A, Kerty E, Skullerud K, Cairns N J (2006). Neuropathological changes in ten cases of neuronal intermediate filament inclusion disease (NIFID): a study using alpha-internexin immunohistochemistry and principal components analysis (PCA). J Neural Transm, 113(9): 1207–1215PubMedGoogle Scholar
  8. Asbury A K, Gale M K, Cox S C, Baringer J R, Berg B O (1972). Giant axonal neuropathy—a unique case with segmental neurofilamentous masses. Acta Neuropathol, 20(3): 237–247PubMedGoogle Scholar
  9. Asrar S, Meng Y, Zhou Z, Todorovski Z, Huang W W, Jia Z (2009). Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1). Neuropharmacology, 56(1): 73–80PubMedGoogle Scholar
  10. Baas P W, Ahmad F J (2013). Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. Brain, 136(Pt 10): 2937–2951PubMedGoogle Scholar
  11. Ballatore C, Lee V M, Trojanowski J Q (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci, 8(9): 663–672PubMedGoogle Scholar
  12. Bégou M, Brun P, Bertrand J B, Job D, Schweitzer A, D’Amato T, Saoud M, Andrieux A, Suaud-Chagny M F (2007). Post-pubertal emergence of alterations in locomotor activity in stop null mice. Synapse, 61(9): 689–697PubMedGoogle Scholar
  13. Bégou M, Volle J, Bertrand J B, Brun P, Job D, Schweitzer A, Saoud M, D’Amato T, Andrieux A, Suaud-Chagny M F (2008). The stop null mice model for schizophrenia displays [corrected] cognitive and social deficits partly alleviated by neuroleptics. Neuroscience, 157(1): 29–39PubMedGoogle Scholar
  14. Belichenko P V, Dahlström A (1995). Studies on the 3-dimensional architecture of dendritic spines and varicosities in human cortex by confocal laser scanning microscopy and Lucifer yellow microinjections. J Neurosci Methods, 57(1): 55–61PubMedGoogle Scholar
  15. Bento-Abreu A, Van Damme P, Van Den Bosch L, Robberecht W (2010). The neurobiology of amyotrophic lateral sclerosis. Eur J Neurosci, 31(12): 2247–2265PubMedGoogle Scholar
  16. Bergeron C, Beric-Maskarel K, Muntasser S, Weyer L, Somerville M J, Percy M E (1994). Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol, 53(3): 221–230PubMedGoogle Scholar
  17. Bernhardt R, Matus A (1984). Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. J Comp Neurol, 226(2): 203–221PubMedGoogle Scholar
  18. Bishop A L, Hall A (2000). Rho GTPases and their effector proteins. Biochem J, 348(Pt 2): 241–255PubMedGoogle Scholar
  19. Bloom G S, Vallee R B (1983). Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells. J Cell Biol, 96(6): 1523–1531PubMedGoogle Scholar
  20. Bocquet A, Berges R, Frank R, Robert P, Peterson A C, Eyer J (2009). Neurofilaments bind tubulin and modulate its polymerization. J Neurosci, 29(35): 11043–11054PubMedGoogle Scholar
  21. Bosch M, Hayashi Y (2012). Structural plasticity of dendritic spines. Curr Opin Neurobiol, 22(3): 383–388PubMedGoogle Scholar
  22. Brettschneider J, Petzold A, Süssmuth S D, Ludolph A C, Tumani H (2006). Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology, 66(6): 852–856PubMedGoogle Scholar
  23. Brun P, Bégou M, Andrieux A, Mouly-Badina L, Clerget M, Schweitzer A, Scarna H, Renaud B, Job D, Suaud-Chagny M F (2005). Dopaminergic transmission in STOP null mice. J Neurochem, 94(1): 63–73PubMedGoogle Scholar
  24. Brunden K R, Zhang B, Carroll J, Yao Y, Potuzak J S, Hogan A M, Iba M, James M J, Xie S X, Ballatore C, Smith A B 3rd, Lee V M Y, Trojanowski J Q (2010). Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci, 30(41): 13861–13866PubMedCentralPubMedGoogle Scholar
  25. Bugyi B, Papp G, Hild G, Lõrinczy D, Nevalainen E M, Lappalainen P, Somogyi B, Nyitrai M (2006). Formins regulate actin filament flexibility through long range allosteric interactions. J Biol Chem, 281(16): 10727–10736PubMedCentralPubMedGoogle Scholar
  26. Caceres A, Banker G, Steward O, Binder L, Payne M (1984). MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Brain Res, 315(2): 314–318PubMedGoogle Scholar
  27. Cairns N J, Lee V M Y, Trojanowski J Q (2004). The cytoskeleton in neurodegenerative diseases. J Pathol, 204(4): 438–449PubMedCentralPubMedGoogle Scholar
  28. Chai X, Förster E, Zhao S, Bock H H, Frotscher M (2009). Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing ncofilin phosphorylation at serine3. J Neurosci, 29(1): 288–299PubMedGoogle Scholar
  29. Chen Y, Zheng ZZ, Huang R, Chen K, Song W, Zhao B, Chen X, Yang Y, Yuan L, Shang HF (2013) PFN1 mutations are rare in Han Chinese populations with amyotrophic lateral sclerosis. Neurobiol Aging 34:1922 e1921–1925.Google Scholar
  30. Clinton SM, Abelson S, Haroutunian V, Davis K, Meador-Woodruff J H (2004). Neurofilament subunit protein abnormalities in the thalamus in scizophrenia. Thalamus Relat Syst, 2: 265–272Google Scholar
  31. Clinton S M, Haroutunian V, Davis K L, Meador-Woodruff J H (2003). Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry, 160(6): 1100–1109PubMedGoogle Scholar
  32. Cohen R S, Chung S K, Pfaff D W (1985). Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe. Cell Mol Neurobiol, 5(3): 271–284PubMedGoogle Scholar
  33. Collard J F, Côté F, Julien J P (1995). Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature, 375(6526): 61–64PubMedGoogle Scholar
  34. Côté F, Collard J F, Julien J P (1993). Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell, 73(1): 35–46PubMedGoogle Scholar
  35. Cotter D, Wilson S, Roberts E, Kerwin R, Everall I P (2000). Increased dendritic MAP2 expression in the hippocampus in schizophrenia. Schizophr Res, 41(2): 313–323PubMedGoogle Scholar
  36. Daoud H, Dobrzeniecka S, Camu W, Meininger V, Dupre N, Dion PA, Rouleau GA (2013) Mutation analysis of PFN1 in familial amyotrophic lateral sclerosis patients. Neurobiol Aging 34:1311 e1311–1312.Google Scholar
  37. Dehmelt L, Halpain S (2004). Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol, 58(1): 18–33PubMedGoogle Scholar
  38. Dent EW, Kalil K (2001). Axon branching requires interactions between dynamic microtubules and actin filaments. J Neurosci, 21(24): 9757–9769PubMedGoogle Scholar
  39. Deo A J, Goldszer I M, Li S, DiBitetto J V, Henteleff R, Sampson A, Lewis D A, Penzes P, Sweet R A (2013). PAK1 protein expression in the auditory cortex of schizophrenia subjects. PLoS ONE, 8(4): e59458PubMedCentralPubMedGoogle Scholar
  40. Díez-Guerra F J, Avila J (1993). MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture. Neuroreport, 4(4): 419–422PubMedGoogle Scholar
  41. DiProspero N A, Chen E Y, Charles V, Plomann M, Kordower J H, Tagle D A (2004). Early changes in Huntington’s disease patient brains involve alterations in cytoskeletal and synaptic elements. J Neurocytol, 33(5): 517–533PubMedGoogle Scholar
  42. Dixit R, Ross J L, Goldman Y E, Holzbaur E L (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science, 319(5866): 1086–1089PubMedCentralPubMedGoogle Scholar
  43. Dom R, Malfroid M, Baro F (1976). Neuropathology of Huntington’s chorea. Studies of the ventrobasal complex of the thalamus. Neurology, 26(1): 64–68Google Scholar
  44. Downing K H, Nogales E (1998). Tubulin and microtubule structure. Curr Opin Cell Biol, 10(1): 16–22PubMedGoogle Scholar
  45. Duan W, Guo Y, Jiang H, Yu X, Li C (2011). MG132 enhances neurite outgrowth in neurons overexpressing mutant TAR DNA-binding protein-43 via increase of HO-1. Brain Res, 1397: 1–9PubMedGoogle Scholar
  46. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E (1998). Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol, 143(3): 777–794PubMedGoogle Scholar
  47. Edwards D C, Sanders L C, Bokoch GM, Gill G N (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol, 1(5): 253–259PubMedGoogle Scholar
  48. Ehlers M D, Fung E T, O’Brien R J, Huganir R L (1998). Splice variantspecific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci, 18(2): 720–730PubMedGoogle Scholar
  49. Ehlers M D, Tingley W G, Huganir R L (1995). Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science, 269(5231): 1734–1737PubMedGoogle Scholar
  50. Ferri C P, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes P R, Rimmer E, Scazufca M, and the Alzheimer’s Disease International (2005). Global prevalence of dementia: a Delphi consensus study. Lancet, 366(9503): 2112–2117PubMedCentralPubMedGoogle Scholar
  51. Figlewicz D A, Krizus A, Martinoli M G, Meininger V, Dib M, Rouleau G A, Julien J P (1994). Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet, 3(10): 1757–1761PubMedGoogle Scholar
  52. Freiman T M, Eismann-Schweimler J, Frotscher M (2011). Granule cell dispersion in temporal lobe epilepsy is associated with changes in dendritic orientation and spine distribution. Exp Neurol, 229(2): 332–338PubMedGoogle Scholar
  53. Fuchs E, Cleveland DW (1998). A structural scaffolding of intermediate filaments in health and disease. Science, 279(5350): 514–519PubMedGoogle Scholar
  54. Fulga T A, Elson-Schwab I, Khurana V, Steinhilb M L, Spires T L, Hyman B T, Feany M B (2007). Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol, 9(2): 139–148PubMedGoogle Scholar
  55. Galloway P G, Mulvihill P, Perry G (1992). Filaments of Lewy bodies contain insoluble cytoskeletal elements. Am J Pathol, 140(4): 809–822PubMedGoogle Scholar
  56. Galloway P G, Perry G, Gambetti P (1987). Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol, 46(2): 185–199PubMedGoogle Scholar
  57. Garey L J, Ong W Y, Patel T S, Kanani M, Davis A, Mortimer A M, Barnes T R, Hirsch S R (1998). Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry, 65(4): 446–453PubMedGoogle Scholar
  58. Ge W W, Wen W, Strong W, Leystra-Lantz C, Strong M J (2005). Mutant copper-zinc superoxide dismutase binds to and destabilizes human low molecular weight neurofilament mRNA. J Biol Chem, 280(1): 118–124PubMedGoogle Scholar
  59. Gibson P H, Tomlinson B E (1977). Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci, 33(1–2): 199–206PubMedGoogle Scholar
  60. Glantz L A, Lewis D A (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry, 57(1): 65–73PubMedGoogle Scholar
  61. Glantz L A, Lewis D A (2001). Dendritic spine density in schizophrenia and depression. Arch Gen Psychiatry, 58(2): 203PubMedGoogle Scholar
  62. Goedert M, Wischik C M, Crowther R A, Walker J E, Klug A (1988). Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA, 85(11): 4051–4055PubMedGoogle Scholar
  63. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung Y C, Zaidi M S, Wisniewski H M (1986a). Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem, 261(13): 6084–6089PubMedGoogle Scholar
  64. Grundke-Iqbal I, Iqbal K, Tung Y C, Quinlan M, Wisniewski H M, Binder L I (1986b). Abnormal phosphorylation of the microtubuleassociated protein tau (τ) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA, 83(13): 4913–4917PubMedGoogle Scholar
  65. Gunning P, O’Neill G, Hardeman E (2008). Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev, 88(1): 1–35PubMedGoogle Scholar
  66. Haas C A, Dudeck O, Kirsch M, Huszka C, Kann G, Pollak S, Zentner J, Frotscher M (2002). Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci, 22(14): 5797–5802PubMedGoogle Scholar
  67. Hanger D P, Anderton B H, Noble W (2009). Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med, 15(3): 112–119PubMedGoogle Scholar
  68. Hayashi M L, Choi S Y, Rao B S, Jung H Y, Lee H K, Zhang D, Chattarji S, Kirkwood A, Tonegawa S (2004). Altered cortical synaptic morphology and impaired memory consolidation in forebrain-specific dominant-negative PAK transgenic mice. Neuron, 42(5): 773–787PubMedGoogle Scholar
  69. Hill J J, Hashimoto T, Lewis D A (2006). Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol Psychiatry, 11(6): 557–566PubMedGoogle Scholar
  70. Hill W D, Lee V M, Hurtig H I, Murray J M, Trojanowski J Q (1991). Epitopes located in spatially separate domains of each neurofilament subunit are present in Parkinson’s disease Lewy bodies. J Comp Neurol, 309(1): 150–160PubMedGoogle Scholar
  71. Houser C R (1990). Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res, 535(2): 195–204PubMedGoogle Scholar
  72. Hutton M, Lendon C L, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen R C, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon J M, Nowotny P, Che L K, Norton J, Morris J C, Reed L A, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd P R, Hayward N, Kwok J B, Schofield P R, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra B A, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998). Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 393(6686): 702–705PubMedGoogle Scholar
  73. Ingre C, Landers JE, Rizik N, Volk AE, Akimoto C, Birve A, Hubers A, Keagle PJ, Piotrowska K, Press R, Andersen PM, Ludolph AC, Weishaupt J H (2013). A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic, and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts. Neurobiol Aging, 34:1708 e1701–1706Google Scholar
  74. Iqbal K, Grundke-Iqbal I, Zaidi T, Merz P A, Wen G Y, Shaikh S S, Wisniewski H M, Alafuzoff I, Winblad B (1986). Defective brain microtubule assembly in Alzheimer’s disease. Lancet, 2(8504): 421–426PubMedGoogle Scholar
  75. Ittner LM, Ke Y D, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng B C, Christie M J, Napier I A, Eckert A, Staufenbiel M, Hardeman E, Götz J (2010). Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell, 142(3): 387–397PubMedGoogle Scholar
  76. Jordanova A, De Jonghe P, Boerkoel C F, Takashima H, De Vriendt E, Ceuterick C, Martin J J, Butler I J, Mancias P, Papasozomenos S Ch, Terespolsky D, Potocki L, Brown C W, Shy M, Rita D A, Tournev I, Kremensky I, Lupski J R, Timmerman V (2003). Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain, 126(Pt 3): 590–597PubMedGoogle Scholar
  77. Ke Y D, Suchowerska A K, van der Hoven J, De Silva D M, Wu C W, van Eersel J, Ittner A, Ittner L M (2012). Lessons from tau-deficient mice. Int J Alzheimers Dis, 2012: 873270PubMedCentralPubMedGoogle Scholar
  78. Kim C H, Lisman J E (1999). A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci, 19(11): 4314–4324PubMedGoogle Scholar
  79. Korobova F, Svitkina T (2008). Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. Mol Biol Cell, 19(4): 1561–1574PubMedCentralPubMedGoogle Scholar
  80. Krüger R, Fischer C, Schulte T, Strauss KM, Müller T, Woitalla D, Berg D, Hungs M, Gobbele R, Berger K, Epplen J T, Riess O, Schöls L (2003). Mutation analysis of the neurofilamentMgene in Parkinson’s disease. Neurosci Lett, 351(2): 125–129PubMedGoogle Scholar
  81. Kuhn T B, Bamburg J R (2008). Tropomyosin and ADF/cofilin as collaborators and competitors. Adv Exp Med Biol, 644: 232–249PubMedGoogle Scholar
  82. Lattante S, Le Ber I, Camuzat A, Brice A, Kabashi E (2013). Mutations in the PFN1 gene are not a common cause in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration in France. Neurobiol Aging, 34:1709 e1701–1702Google Scholar
  83. Lavedan C, Buchholtz S, Nussbaum R L, Albin R L, Polymeropoulos M H (2002). A mutation in the human neurofilament M gene in Parkinson’s disease that suggests a role for the cytoskeleton in neuronal degeneration. Neurosci Lett, 322(1): 57–61PubMedGoogle Scholar
  84. Lee M K, Marszalek J R, Cleveland D W (1994). A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron, 13(4): 975–988PubMedGoogle Scholar
  85. Lee V M, Goedert M, Trojanowski J Q (2001). Neurodegenerative tauopathies. Annu Rev Neurosci, 24(1): 1121–1159PubMedGoogle Scholar
  86. Li B, Chohan M O, Grundke-Iqbal I, Iqbal K (2007). Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol, 113(5): 501–511PubMedCentralPubMedGoogle Scholar
  87. Lücking C B, Dürr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi B S, Meco G, Denèfle P, Wood NW, Agid Y, Brice A, and the French Parkinson’s Disease Genetics Study Group, and the European Consortium on Genetic Susceptibility in Parkinson’s Disease (2000). Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med, 342(21): 1560–1567PubMedGoogle Scholar
  88. Luo L, Hensch T K, Ackerman L, Barbel S, Jan L Y, Jan Y N (1996). Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature, 379(6568): 837–840PubMedGoogle Scholar
  89. Maciver S K, Harrington C R (1995). Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies. Neuroreport, 6(15): 1985–1988PubMedGoogle Scholar
  90. Mahammad S, Murthy S N, Didonna A, Grin B, Israeli E, Perrot R, Bomont P, Julien J P, Kuczmarski E, Opal P, Goldman R D (2013). Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest, 123(5): 1964–1975PubMedCentralPubMedGoogle Scholar
  91. Manetto V, Sternberger N H, Perry G, Sternberger L A, Gambetti P (1988). Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol, 47(6): 642–653PubMedGoogle Scholar
  92. Manser E, Leung T, Salihuddin H, Zhao Z S, Lim L (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 367(6458): 40–46PubMedGoogle Scholar
  93. Matus A (1988). Microtubule-associated proteins: their potential role in determining neuronal morphology. Annu Rev Neurosci, 11(1): 29–44PubMedGoogle Scholar
  94. Minamide L S, Striegl AM, Boyle J A, Meberg P J, Bamburg J R (2000). Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol, 2(9): 628–636PubMedGoogle Scholar
  95. Mitchison T J, Cramer L P (1996). Actin-based cell motility and cell locomotion. Cell, 84(3): 371–379PubMedGoogle Scholar
  96. Mockrin S C, Korn E D (1980). Acanthamoeba profilin interacts with Gactin to increase the rate of exchange of actin-bound adenosine 5′-triphosphate. Biochemistry, 19(23): 5359–5362PubMedGoogle Scholar
  97. Morfini G, Pigino G, Mizuno N, Kikkawa M, Brady S T (2007). Tau binding to microtubules does not directly affect microtubule-based vesicle motility. J Neurosci Res, 85(12): 2620–2630PubMedGoogle Scholar
  98. Moriwaki A, Lu Y F, Tomizawa K, Matsui H (1998). An immunosuppressant, FK506, protects against neuronal dysfunction and death but has no effect on electrographic and behavioral activities induced by systemic kainate. Neuroscience, 86(3): 855–865PubMedGoogle Scholar
  99. Morrison BM, Shu IW, Wilcox A L, Gordon JW, Morrison J H (2000). Early and selective pathology of light chain neurofilament in the spinal cord and sciatic nerve of G86R mutant superoxide dismutase transgenic mice. Exp Neurol, 165(2): 207–220PubMedGoogle Scholar
  100. Munoz D G, Greene C, Perl D P, Selkoe D J (1988). Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol, 47(1): 9–18PubMedGoogle Scholar
  101. Niebroj-Dobosz I, Dziewulska D, Janik P (2006). Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS). Folia neuropathologica / Association of Polish Neuropathologists and Medical Research Centre. Polish Academy of Sciences, 44: 191–196Google Scholar
  102. Nishida E, Iida K, Yonezawa N, Koyasu S, Yahara I, Sakai H (1987). Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci USA, 84(15): 5262–5266PubMedGoogle Scholar
  103. Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 108(2): 233–246PubMedGoogle Scholar
  104. Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci, 7(10): 1104–1112PubMedGoogle Scholar
  105. Ouyang Y, Yang X F, Hu X Y, Erbayat-Altay E, Zeng L H, Lee J M, Wong M (2007). Hippocampal seizures cause depolymerization of filamentous actin in neurons independent of acute morphological changes. Brain Res, 1143: 238–246PubMedCentralPubMedGoogle Scholar
  106. Patrick G N, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai L H (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402(6762): 615–622PubMedGoogle Scholar
  107. Pavlik L L, Moshkov D A (1991). Actin in synaptic cytoskeleton during long-term potentiation in hippocampal slices. Acta Histochem Suppl, 41(Supp 41): 257–264PubMedGoogle Scholar
  108. Pérez-Ollé R, López-Toledano M A, Goryunov D, Cabrera-Poch N, Stefanis L, Brown K, Liem R K (2005). Mutations in the neurofilament light gene linked to Charcot-Marie-Tooth disease cause defects in transport. J Neurochem, 93(4): 861–874PubMedGoogle Scholar
  109. Perrot R, Berges R, Bocquet A, Eyer J (2008). Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol, 38(1): 27–65PubMedGoogle Scholar
  110. Powell K J, Hori S E, Leslie R, Andrieux A, Schellinck H, Thorne M, Robertson G S (2007). Cognitive impairments in the STOP null mouse model of schizophrenia. Behav Neurosci, 121(5): 826–835PubMedGoogle Scholar
  111. Prineas J W, Ouvrier R A, Wright R G, Walsh J C, McLeod J G (1976). Gian axonal neuropathy—a generalized disorder of cytoplasmic microfilament formation. J Neuropathol Exp Neurol, 35(4): 458–470PubMedGoogle Scholar
  112. Qiang L, Yu W, Andreadis A, Luo M, Baas P W (2006). Tau protects microtubules in the axon from severing by katanin. J Neurosci, 26(12): 3120–3129PubMedGoogle Scholar
  113. Rao M V, Mohan P S, Kumar A, Yuan A, Montagna L, Campbell J, Veeranna, Espreafico EM, Julien J P, Nixon R A (2011). The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. PLoS ONE, 6(2): e17087PubMedCentralPubMedGoogle Scholar
  114. Ren Y, Jiang H, Yang F, Nakaso K, Feng J (2009). Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J Biol Chem, 284(6): 4009–4017PubMedGoogle Scholar
  115. Ren Y, Zhao J, Feng J (2003). Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci, 23(8): 3316–3324PubMedCentralPubMedGoogle Scholar
  116. Rex C S, Chen L Y, Sharma A, Liu J, Babayan A H, Gall C M, Lynch G (2009). Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J Cell Biol, 186(1): 85–97PubMedGoogle Scholar
  117. Rossiter J P, Anderson L L, Yang F, Cole G M (2000). Caspase-cleaved actin (fractin) immunolabelling of Hirano bodies. Neuropathol Appl Neurobiol, 26(4): 342–346PubMedGoogle Scholar
  118. Rossoll W, Jablonka S, Andreassi C, Kröning A K, Karle K, Monani U R, Sendtner M (2003). Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol, 163(4): 801–812PubMedGoogle Scholar
  119. Rovelet-Lecrux A, Campion D (2012). Copy number variations involving the microtubule-associated protein tau in human diseases. Biochem Soc Trans, 40(4): 672–676PubMedGoogle Scholar
  120. Roy S, Zhang B, Lee V M, Trojanowski J Q (2005). Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol, 109(1): 5–13PubMedGoogle Scholar
  121. Rubio M D, Haroutunian V, Meador-Woodruff J H (2012). Abnormalities of the Duo/Ras-related C3 botulinum toxin substrate 1/p21-activated kinase 1 pathway drive myosin light chain phosphorylation in frontal cortex in schizophrenia. Biol Psychiatry, 71(10): 906–914PubMedCentralPubMedGoogle Scholar
  122. Sánchez C, Arellano J I, Rodríguez-Sánchez P, Avila J, DeFelipe J, Díez-Guerra F J (2001). Microtubule-associated protein 2 phosphorylation is decreased in the human epileptic temporal lobe cortex. Neuroscience, 107(1): 25–33PubMedGoogle Scholar
  123. Sánchez C, Díaz-Nido J, Avila J (2000). Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol, 61(2): 133–168PubMedGoogle Scholar
  124. Scheibel M E, Crandall P H, Scheibel A B (1974). The hippocampaldentate complex in temporal lobe epilepsy. A Golgi study. Epilepsia, 15(1): 55–80Google Scholar
  125. Schevzov G, Curthoys N M, Gunning P W, Fath T (2012). Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. Int Rev Cell Mol Biol, 298: 33–94PubMedGoogle Scholar
  126. Schmidt M L, Lee V M, Trojanowski J Q (1989). Analysis of epitopes shared by Hirano bodies and neurofilament proteins in normal and Alzheimer’s disease hippocampus. Lab Invest, 60(4): 513–522PubMedGoogle Scholar
  127. Schneider A B J, Biernat J, von Bergen M, Mandelkow E M, Mandelkow E M (1999). Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry, 38(12): 3549–3558PubMedGoogle Scholar
  128. Scott W K, Nance M A, Watts R L, Hubble J P, Koller W C, Lyons K, Pahwa R, Stern M B, Colcher A, Hiner B C, Jankovic J, Ondo W G, Allen F H Jr, Goetz C G, Small G W, Masterman D, Mastaglia F, Laing N G, Stajich J M, Slotterbeck B, Booze M W, Ribble R C, Rampersaud E, West S G, Gibson R A, Middleton L T, Roses A D, Haines J L, Scott B L, Vance J M, Pericak-Vance M A (2001). Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA, 286(18): 2239–2244PubMedGoogle Scholar
  129. Seitz A, Kojima H, Oiwa K, Mandelkow E M, Song Y H, Mandelkow E (2002). Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J, 21(18): 4896–4905PubMedGoogle Scholar
  130. Shimizu H, Iwayama Y, Yamada K, Toyota T, Minabe Y, Nakamura K, Nakajima M, Hattori E, Mori N, Osumi N, Yoshikawa T (2006). Genetic and expression analyses of the STOP (MAP6) gene in schizophrenia. Schizophr Res, 84(2-3): 244–252PubMedGoogle Scholar
  131. Sousa V L, Bellani S, Giannandrea M, Yousuf M, Valtorta F, Meldolesi J, Chieregatti E (2009). alpha-synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. Mol Biol Cell, 20(16): 3725–3739PubMedCentralPubMedGoogle Scholar
  132. Sternberger L A, Sternberger N H (1983). Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neuro-filaments in situ. Proc Natl Acad Sci USA, 80(19): 6126–6130PubMedGoogle Scholar
  133. Sudo H, Baas P W (2011). Strategies for diminishing katanin-based loss of microtubules in tauopathic neurodegenerative diseases. Hum Mol Genet, 20(4): 763–778PubMedGoogle Scholar
  134. Sweet R A, Henteleff R A, Zhang W, Sampson A R, Lewis D A (2009). Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology, 34(2): 374–389PubMedCentralPubMedGoogle Scholar
  135. Takeuchi H, Kobayashi Y, Yoshihara T, Niwa J, Doyu M, Ohtsuka K, Sobue G (2002). Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res, 949(1–2): 11–22PubMedGoogle Scholar
  136. Tiloca C, Ticozzi N, Pensato V, Corrado L, Del Bo R, Bertolin C, Fenoglio C, Gagliardi S, Calini D, Lauria G, Castellotti B, Bagarotti A, Corti S, Galimberti D, Cagnin A, Gabelli C, Ranieri M, Ceroni M, Siciliano G, Mazzini L, Cereda C, Scarpini E, Soraru G, Comi GP, D’Alfonso S, Gellera C, Ratti A, Landers JE, Silani V (2013). Screening of the PFN1 gene in sporadic amyotrophic lateral sclerosis and in frontotemporal dementia. Neurobiol Aging, 34:1517 e1519–1510PubMedGoogle Scholar
  137. Torres-Benito L, Ruiz R, Tabares L (2012). Synaptic defects in spinal muscular atrophy animal models. Dev Neurobiol, 72(1): 126–133PubMedGoogle Scholar
  138. Tortelli R, Ruggieri M, Cortese R, D’Errico E, Capozzo R, Leo A, Mastrapasqua M, Zoccolella S, Leante R, Livrea P, Logroscino G, Simone I L (2012). Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol, 19(12): 1561–1567PubMedGoogle Scholar
  139. Trojanowski J Q, Lee VMY (2005). Rous-Whipple Award Lecture. The Alzheimer’s brain: finding out what’s broken tells us how to fix it. Am J Pathol, 167(5): 1183–1188PubMedGoogle Scholar
  140. Tseng Y, An K M, Esue O, Wirtz D (2004). The bimodal role of filamin in controlling the architecture and mechanics of F-actin networks. J Biol Chem, 279(3): 1819–1826PubMedGoogle Scholar
  141. van Blitterswijk M, Baker MC, Bieniek KF, Knopman DS, Josephs KA, Boeve B, Caselli R, Wszolek ZK, Petersen R, Graff-Radford NR, Boylan KB, Dickson DW, Rademakers R (2013). Profilin-1 mutations are rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener 14:463–469PubMedGoogle Scholar
  142. Wagner U, Utton M, Gallo J M, Miller C C (1996). Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. J Cell Sci, 109(Pt 6): 1537–1543PubMedGoogle Scholar
  143. Wong N K, He B P, Strong M J (2000). Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol, 59(11): 972–982PubMedGoogle Scholar
  144. Wu C H, Fallini C, Ticozzi N, Keagle P J, Sapp P C, Piotrowska K, Lowe P, Koppers M, McKenna-Yasek D, Baron D M, Kost J E, Gonzalez-Perez P, Fox A D, Adams J, Taroni F, Tiloca C, Leclerc A L, Chafe S C, Mangroo D, Moore MJ, Zitzewitz J A, Xu Z S, van den Berg L H, Glass J D, Siciliano G, Cirulli E T, Goldstein D B, Salachas F, Meininger V, Rossoll W, Ratti A, Gellera C, Bosco D A, Bassell G J, Silani V, Drory V E, Brown R H Jr, Landers J E (2012). Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature, 488(7412): 499–503PubMedCentralPubMedGoogle Scholar
  145. Xie Z, Srivastava D P, Photowala H, Kai L, Cahill M E, Woolfrey K M, Shum C Y, Surmeier D J, Penzes P (2007). Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron, 56(4): 640–656PubMedCentralPubMedGoogle Scholar
  146. Xu Z, Cork L C, Griffin J W, Cleveland D W (1993). Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell, 73(1): 23–33PubMedGoogle Scholar
  147. Yang F, Jiang Q, Zhao J, Ren Y, Sutton M D, Feng J (2005). Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem, 280(17): 17154–17162PubMedGoogle Scholar
  148. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature, 393(6687): 809–812PubMedGoogle Scholar
  149. Yang S, Fifita J A, Williams K L, Warraich ST, Pamphlett R, Nicholson G A, Blair I P (2013). Mutation analysis and immunopathological studies of PFN1 in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging, 34:2235 e2237–2210Google Scholar
  150. Yoshihara T, Yamamoto M, Hattori N, Misu K, Mori K, Koike H, Sobue G (2002). Identification of novel sequence variants in the neurofilament-light gene in a Japanese population: analysis of Charcot-Marie-Tooth disease patients and normal individuals. J Peripher Nerv Syst, 7(4): 221–224PubMedGoogle Scholar
  151. Zeng L H, Xu L, Rensing N R, Sinatra P M, Rothman S M, Wong M (2007). Kainate seizures cause acute dendritic injury and actin depolymerization in vivo. J Neurosci, 27(43): 11604–11613PubMedGoogle Scholar
  152. Zhang B, Carroll J, Trojanowski J Q, Yao Y, Iba M, Potuzak J S, Hogan A M L, Xie S X, Ballatore C, Smith A B 3rd, Lee V M L, Brunden K R (2012). The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimerlike pathology in an interventional study with aged tau transgenic mice. J Neurosci, 32(11): 3601–3611PubMedCentralPubMedGoogle Scholar
  153. Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G, Bruce J, Lee E B, Xie S X, Joyce S, Li C, Toleikis PM, Lee VM, Trojanowski J Q (2005). Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA, 102(1): 227–231PubMedGoogle Scholar
  154. Zhang W, Benson D L (2001). Stages of synapse development defined by dependence on F-actin. J Neurosci, 21:5169–5181PubMedGoogle Scholar
  155. Zhu Q, Couillard-Després S, Julien J P (1997). Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol, 148(1): 299–316PubMedGoogle Scholar
  156. Zou ZY, Sun Q, Liu MS, Li XG, Cui LY (2013). Mutations in the profilin 1 gene are not common in amyotrophic lateral sclerosis of Chinese origin. Neurobiol Aging, 34:1713 e1715–1716Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Neurodegeneration and Repair Unit, School of Medical SciencesUniversity of New South WalesRandwickAustralia

Personalised recommendations