Advertisement

Frontiers in Biology

, Volume 8, Issue 4, pp 369–376 | Cite as

The perinucleolar compartment associates with malignancy

  • Yiping Wen
  • Chen Wang
  • Sui HuangEmail author
Review

Abstract

The perinucleolar compartment (PNC) is a unique nuclear substructure, forming predominantly in cancer cells both in vitro and in vivo. PNC prevalence (percentage of cells containing at least one PNC) has been found to positively correlate with disease progression in several cancers (breast, ovarian, and colon). While there is a clear association between PNCs and cancer, the molecular function of the PNC remains unclear. Here we summarize the current understanding of the association of PNCs with cancer and its possible functions in cancer cells.

Keywords

PNC cancer nuclear substructure gene expression regulation structure and function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman S (1990). Ribonuclease P. Postscript. J Biol Chem, 265(33): 20053–20056Google Scholar
  2. Anderson J T, Wilson S M, Datar K V, Swanson M S, (1993). NAB2: a yeast nuclear polyadenylated RNA-binding protein essential for cell viability. Mol Cell Biol, 13(5): 2730–2741PubMedGoogle Scholar
  3. Apponi L H, Corbett A H, Pavlath G K (2011). RNA-binding proteins and gene regulation in myogenesis. Trends Pharmacol Sci, 32(11): 652–658PubMedCrossRefGoogle Scholar
  4. Bond C S, Fox A H (2009). Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol, 186(5): 637–644PubMedCrossRefGoogle Scholar
  5. Castelo-Branco P, Furger A, Wollerton M, Smith C, Moreira A, Proudfoot N (2004). Polypyrimidine tract binding protein modulates efficiency of polyadenylation. Mol Cell Biol, 24(10): 4174–4183PubMedCrossRefGoogle Scholar
  6. Charlet B N, Savkur R S, Singh G, Philips A V, Grice E A, Cooper T A (2002). Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell, 10(1): 45–53CrossRefGoogle Scholar
  7. Chen M, Zhang J, Manley J L (2010). Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res, 70(22): 8977–8980PubMedCrossRefGoogle Scholar
  8. Clayton D A (1994). A nuclear function for RNase MRP. Proc Natl Acad Sci USA, 91(11): 4615–4617PubMedCrossRefGoogle Scholar
  9. Esakova O, Krasilnikov A S (2010). Of proteins and RNA: the RNase P/MRP family. RNA, 16(9): 1725–1747PubMedCrossRefGoogle Scholar
  10. Esakova O, Perederina A, Quan C, Berezin I, Krasilnikov A S (2011). Substrate recognition by ribonucleoprotein ribonuclease MRP. RNA, 17(2): 356–364PubMedCrossRefGoogle Scholar
  11. Fox A H, Lamond A I (2010). Paraspeckles. Cold Spring Harb Perspect Biol, 2(7): a000687PubMedCrossRefGoogle Scholar
  12. Frank R, Hargreaves R (2003). Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov, 2(7): 566–580PubMedCrossRefGoogle Scholar
  13. Garcia-Blanco M A, Jamison S F, Sharp P A (1989). Identification and purification of a 62000-dalton protein that binds specifically to the polypyrimidine tract of introns. Genes Dev, 3(12A): 1874–1886PubMedCrossRefGoogle Scholar
  14. Ghetti A, Pinol-Roma S, Michael W M, Morandi C, Dreyfuss G (1992). hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res, 20(14): 3671–3678PubMedCrossRefGoogle Scholar
  15. Gromak N, Rideau A, Southby J, Scadden A D J, Gooding C, Hüttelmaier S, Singer R H, Smith CWJ (2003). The PTB interacting protein raver1 regulates alpha-tropomyosin alternative splicing. EMBO J, 22(23): 6356–6364PubMedCrossRefGoogle Scholar
  16. Hall M P, Huang S, Black D L (2004). Differentiation-induced colocalization of the KH-type splicing regulatory protein with polypyrimidine tract binding protein and the c-src pre-mRNA. Mol Biol Cell, 15(2): 774–786PubMedCrossRefGoogle Scholar
  17. Hellen C U, Pestova T V, Litterst M, Wimmer E (1994). The cellular polypeptide p57 (pyrimidine tract-binding protein) binds to multiple sites in the poliovirus 5′ nontranslated region. J Virol, 68(2): 941–950PubMedGoogle Scholar
  18. Ho T H, Bundman D, Armstrong D L, Cooper T A (2005). Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Hum Mol Genet, 14(11): 1539–1547PubMedCrossRefGoogle Scholar
  19. Huang S, Deerinck T J, Ellisman MH, Spector D L (1997). The dynamic organization of the perinucleolar compartment in the cell nucleus. J Cell Biol, 137(5): 965–974PubMedCrossRefGoogle Scholar
  20. Huang S, Deerinck T J, Ellisman M H, Spector D L (1998). The perinucleolar compartment and transcription. J Cell Biol, 143(1): 35–47PubMedCrossRefGoogle Scholar
  21. Huttelmaier S, Illenberger S, Grosheva I, Rudiger M, Singer R H, and Jockusch B M (2001). Raver1, a dual compartment protein, is a ligand for PTB/hnRNPI and microfilament attachment proteins. J Cell Biol, 155(5): 775–786PubMedCrossRefGoogle Scholar
  22. Jackson D A, Hassan A B, Errington P R (1993). Visualization of focal sites of transcription within human nuclei. EMBO J, 12: 1059–1065PubMedGoogle Scholar
  23. Jacobson M R, Cao L G, Wang Y L, Pederson T (1995). Dynamic localization of RNase MRP RNA in the nucleolus observed by fluorescent RNA cytochemistry in living cells. J Cell Biol, 131(6 Pt 2): 1649–1658PubMedCrossRefGoogle Scholar
  24. Jarrous N (2002). Human ribonuclease P: subunits, function, and intranuclear localization. RNA, 8(1): 1–7PubMedCrossRefGoogle Scholar
  25. Jones K, Timchenko L, Timchenko N A (2012). The role of CUGBP1 in age-dependent changes of liver functions. Ageing Res Rev, 11(4): 442–449PubMedCrossRefGoogle Scholar
  26. Kafasla P, Mickleburgh I, Llorian M, Coelho M, Gooding C, Cherny D, Joshi A, Kotik-Kogan O, Curry S, Eperon I C, Jackson R J, Smith C WJ (2012). Defining the roles and interactions of PTB. Biochem Soc Trans, 40(4): 815–820PubMedCrossRefGoogle Scholar
  27. Kamath R V, Leary D J, Huang S (2001). Nucleocytoplasmic shuttling of polypyrimidine tract-binding protein is uncoupled from RNA export. Mol Biol Cell, 12(12): 3808–3820PubMedCrossRefGoogle Scholar
  28. Kamath R V, Thor A D, Wang C, Edgerton SM, Slusarczyk A, Leary D J, Wang J, Wiley E L, Jovanovic B, Wu Q, Nayar R, Kovarik P, Shi F, Huang S (2005). Perinucleolar compartment prevalence has an independent prognostic value for breast cancer. Cancer Res, 65(1): 246–253PubMedGoogle Scholar
  29. Kaminski A, Hunt S L, Patton J G, Jackson-Rna R J (1995). Direct evidence that polypyrimidine tract binding protein (PTB) is essential for internal initiation of translation of encephalomyocarditis virus RNA. RNA, 1(9): 924–938PubMedGoogle Scholar
  30. Lee B, Matera A G, Ward D C, Craft J (1996). Association of RNase mitochondrial RNA processing enzyme with ribonuclease P in higher ordered structures in the nucleolus: a possible coordinate role in ribosome biogenesis. Proc Natl Acad Sci USA, 93(21): 11471–11476PubMedCrossRefGoogle Scholar
  31. Liu Y, Norton J T, Witschi M A, Xu Q, Lou G, Wang C, H Appella D, Chen Z, Huang S (2011). Methoxyethylamino-numonafide is an efficacious and minimally toxic amonafide derivative in murine models of human cancer. Neoplasia, 13(5): 453–460PubMedGoogle Scholar
  32. Lou H, Gagel R F, Berget SM (1996). An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev, 10(2): 208–219PubMedCrossRefGoogle Scholar
  33. Lou H, Helfman D M, Gagel R F, Berget S M (1999). Polypyrimidine tract-binding protein positively regulates inclusion of an alternative 3′-terminal exon. Mol Cell Biol, 19(1): 78–85PubMedGoogle Scholar
  34. Mahadevan M S (2012). Myotonic dystrophy: is a narrow focus obscuring the rest of the field? Curr Opin Neurol, 25(5): 609–613PubMedCrossRefGoogle Scholar
  35. Matera A G, Frey M R, Margelot K, Wolin S L (1995). A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol, 129(5): 1181–1193PubMedCrossRefGoogle Scholar
  36. Norton J T, Pollock C B, Wang C, Schink J C, Kim J J, Huang S (2008a). Perinucleolar compartment prevalence is a phenotypic pancancer marker of malignancy. Cancer, 113(4): 861–869PubMedCrossRefGoogle Scholar
  37. Norton J T, Titus S A, Dexter D, Austin C P, Zheng W, Huang S (2009a). Automated high-content screening for compounds that disassemble the perinucleolar compartment. J Biomol Screen, 14(9): 1045–1053PubMedCrossRefGoogle Scholar
  38. Norton J T, Wang C, Gjidoda A, Henry R W, Huang S (2009b). The perinucleolar compartment is directly associated with DNA. J Biol Chem, 284(7): 4090–4101PubMedCrossRefGoogle Scholar
  39. Norton J T, Witschi M A, Luong L, Kawamura A, Ghosh S, Sharon Stack M, Sim E, Avram M J, Appella D H, Huang S (2008b). Synthesis and anticancer activities of 6-amino amonafide derivatives. Anticancer Drugs, 19(1): 23–36PubMedCrossRefGoogle Scholar
  40. O’Keefe R T, Mayeda A, Sadowski C L, Krainer A R, Spec-tor D L (1994). Disruption of pre-mRNA splicing in vivo results in reorganization of splicing factors. J Cell Biol, 124(3): 249–260PubMedCrossRefGoogle Scholar
  41. Paillard L, Legagneux V, Osborne H B (2003). A functional deadenylation assay identifies human CUG-BP as a deadenylation factor. Biol Cell, 95(2): 107–113PubMedCrossRefGoogle Scholar
  42. Perederina A, Esakova O, Quan C, Khanova E, Krasilnikov A S (2010). Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain. EMBO J, 29(4): 761–769PubMedCrossRefGoogle Scholar
  43. Perez I, Lin C H, Mcafee J, Patton J (1997). Mutation of PTB binding sites causes misregulation of alternative 3′ splice site selection in vivo. RNA, 3(7): 764–778PubMedGoogle Scholar
  44. Pettaway C A, Pathak S, Greene G, Ramirez E, Wilson M R, Killion J J, Fidler I J (1996). Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res, 2(9): 1627–1636PubMedGoogle Scholar
  45. Pianese G (1896). Beitrag zur histologie und aetiologie der carcinoma. Histologische und experimentelle untersuchungen. Beitr Pathol Anat Allgem Pathol, 142(1): 193Google Scholar
  46. Pickering B M, Mitchell S A, Evans J R, Willis A E (2003). Polypyrimidine tract binding protein and poly r(C) binding protein 1 interact with the BAG-1 IRES and stimulate its activity in vitro and in vivo. Nucleic Acids Res, 31(2): 639–646PubMedCrossRefGoogle Scholar
  47. Pollock C, Daily K, Nguyen V T, Wang C, Lewandowska M A, Bensaude O, Huang S (2011). Characterization of MRP RNA-protein interactions within the perinucleolar compartment. Mol Biol Cell, 22(6): 858–866PubMedCrossRefGoogle Scholar
  48. Savkur R S, Philips A V, Cooper T A (2001). Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet, 29(1): 40–47PubMedCrossRefGoogle Scholar
  49. Sawicka K, Bushell M, Spriggs K A, Willis A E (2008). Polypyrimidinetract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans, 36(Pt 4): 641–647PubMedCrossRefGoogle Scholar
  50. Schneider R, Agol V I, Andino R, Bayard F, Cavener D R, Chappell S A, Chen J J, Darlix J L, Dasgupta A, Donze O (2001). New ways of initiating translation in eukaryotes. Mol Cell Biol, 21(23): 8238–8246PubMedCrossRefGoogle Scholar
  51. Slusarczyk A, Kamath R, Wang C, Anchel D, Pollock C, Lewandowska M A, Fitzpatrick T, Bazett-Jones D P, Huang S (2010). Structure and function of the perinucleolar compartment in cancer cells. Cold Spring Harb Symp Quant Biol, 75(0): 599–605PubMedCrossRefGoogle Scholar
  52. Steinberg T H, Burgess R R (1992). Tagetitoxin inhibition of RNA polymerase III transcription results from enhanced pausing at discrete sites and is template-dependent. J Biol Chem, 267(28): 20204–20211PubMedGoogle Scholar
  53. Steinberg T H, Mathews D E, Durbin R D, Burgess R R (1990). Tagetitoxin: a new inhibitor of eukaryotic transcription by RNA polymerase III. J Biol Chem, 265(1): 499–505PubMedGoogle Scholar
  54. Timchenko L T, Miller J W, Timchenko N A, DeVore D R, Datar K V, Lin L, Roberts R, Caskey C T, Swanson MS (1996). Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res, 24(22): 4407–4414PubMedCrossRefGoogle Scholar
  55. Valcarcel J, Gebauer F (1997). Post-transcriptional regulation: the dawn of PTB. Curr Biol, 7(11): R705–R708PubMedCrossRefGoogle Scholar
  56. Van Eenennaam H, Vogelzangs J H, Lugtenberg D, Van Den Hoogen F H J, Van Venrooij W J, Pruijn G J M (2002). Identity of the RNase MRP- and RNase P-associated Th/To autoantigen. Arthritis Rheum, 46(12): 3266–3272PubMedCrossRefGoogle Scholar
  57. Wagner E J, Carstens R P, Garcia-Blanco M A (1999). A novel isoform ratio switch of the polypyrimidine tract binding protein. Electrophoresis, 20(4-5): 1082–1086PubMedCrossRefGoogle Scholar
  58. Wagner E J, Garcia-Blanco M A (2002). RNAi-mediated PTB depletion leads to enhanced exon definition. Mol Cell, 10(4): 943–949PubMedCrossRefGoogle Scholar
  59. Wang C, Politz J C, Pederson T, Huang S (2003). RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol Biol Cell, 14(6): 2425–2435PubMedCrossRefGoogle Scholar
  60. Wang J, and Pederson T (1990). A 62000 molecular weight spliceosome protein crosslinks to the intron polypyrimidine tract. Nucleic Acids Res, 18(20): 5995–6001PubMedCrossRefGoogle Scholar
  61. Wansink D G, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L (1993). Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol, 122(2): 283–293PubMedCrossRefGoogle Scholar
  62. Witherell G W, Schultz-Witherell C S, Wimmer E C K A R D (1995). Cis-acting elements of the encephalomyocarditis virus internal ribosomal entry site. Virology, 214(2): 660–663PubMedCrossRefGoogle Scholar
  63. Xiao S, Scott F, Fierke C A, Engelke D R (2002). EUKARYOTIC RIBONUCLEASE P: A Plurality of Ribonucleoprotein Enzymes. Annu Rev Biochem, 71(1): 165–189PubMedCrossRefGoogle Scholar
  64. Xie J, Lee J A, Kress T L, Mowry K L, Black D L (2003). Protein kinase A phosphorylation modulates transport of the polypyrimidine tractbinding protein. Proc Natl Acad Sci USA, 100(15): 8776–8781PubMedCrossRefGoogle Scholar
  65. Zhang W, Liu H, Han K, Grabowski P J (2002). Region-specific alternative splicing in the nervous system: implications for regulation by the RNA-binding protein NAPOR. RNA, 8(5): 671–685PubMedCrossRefGoogle Scholar
  66. Zwerger M, Ho C Y, Lammerding J (2011). Nuclear mechanics in disease. Annu Rev Biomed Eng, 13(1): 397–428PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Cell and Molecular BiologyNorthwestern University, Feinberg School of MedicineChicagoUSA
  2. 2.College of Veterinary MedicineSichuan Agricultural UniversityYaanChina

Personalised recommendations