Frontiers in Biology

, Volume 7, Issue 6, pp 485–494 | Cite as

DNA methylation program during development

Review

Abstract

DNA methylation is a key epigenetic mark when occurring in the promoter and enhancer regions regulates the accessibility of the binding protein and gene transcription. DNA methylation is inheritable and can be de novosynthesized, erased and reinstated, making it arguably one of the most dynamic upstream regulators for gene expression and the most influential pacer for development. Recent progress has demonstrated that two forms of cytosine methylation and two pathways for demethylation constitute ample complexity for an instructional program for orchestrated gene expression and development. The forum of the current discussion and review are whether there is such a program, if so what the DNA methylation program entails, and what environment can change the DNA methylation program. The translational implication of the DNA methylation program is also proposed.

Keywords

epigenetics neural development 5-hydroxymethylcytosine epigenome environmental factors DNA demethylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anway M D, Leathers C, Skinner M K (2006). Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology, 147(12): 5515–5523PubMedCrossRefGoogle Scholar
  2. Bakulski K M, Rozek L S, Dolinoy D C, Paulson H L, Hu H (2012). Alzheimer’s disease and environmental exposure to lead: the epidemiologic evidence and potential role of epigenetics. Curr Alzheimer Res, 9(5): 563–573PubMedGoogle Scholar
  3. Bhutani N, Burns D M, Blau H M (2011). DNA demethylation dynamics. Cell, 146(6): 866–872PubMedCrossRefGoogle Scholar
  4. Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6–21PubMedCrossRefGoogle Scholar
  5. Bird A P (1986). CpG-rich islands and the function of DNA methylation. Nature, 321(6067): 209–213PubMedCrossRefGoogle Scholar
  6. Brandeis M, Ariel M, Cedar H (1993). Dynamics of DNA methylation during development. Bioessays, 15(11): 709–713PubMedCrossRefGoogle Scholar
  7. Brown D C, Grace E, Sumner A T, Edmunds A T, Ellis P M (1995). ICF syndrome (immunodeficiency, centromeric instability and facial anomalies): investigation of heterochromatin abnormalities and review of clinical outcome. Hum Genet, 96(4): 411–416PubMedCrossRefGoogle Scholar
  8. Brown K D, Robertson K D (2007). DNMT1 knockout delivers a strong blow to genome stability and cell viability. Nat Genet, 39(3): 289–290PubMedCrossRefGoogle Scholar
  9. Busslinger M, Hurst J, Flavell R A (1983). DNA methylation and the regulation of globin gene expression. Cell, 34(1): 197–206PubMedCrossRefGoogle Scholar
  10. Caldji C, Hellstrom I C, Zhang T Y, Diorio J, Meaney M J (2011). Environmental regulation of the neural epigenome. FEBS Lett, 2049–2058Google Scholar
  11. Caldji C, Tannenbaum B, Sharma S, Francis D, Plotsky P M, Meaney M J (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci USA, 95(9): 5335–5340PubMedCrossRefGoogle Scholar
  12. Callaghan B, Feldman D, Gruis K, Feldman E (2011). The association of exposure to lead, mercury, and selenium and the development of amyotrophic lateral sclerosis and the epigenetic implications. Neurodegener Dis, 8(1–2): 1–8PubMedCrossRefGoogle Scholar
  13. Champagne F A, Curley J P (2009). Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neurosci Biobehav Rev, 33(4): 593–600PubMedCrossRefGoogle Scholar
  14. Chia N, Wang L, Lu X, Senut M C, Brenner C, Ruden D M (2011). Hypothesis: environmental regulation of 5-hydroxymethylcytosine by oxidative stress. Epigenetics, 6(7): 853–856PubMedCrossRefGoogle Scholar
  15. Dawlaty MM, Ganz K, Powell B E, Hu Y C, Markoulaki S, Cheng AW, Gao Q, Kim J, Choi S W, Page D C, Jaenisch R (2011). Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell, 9(2): 166–175PubMedCrossRefGoogle Scholar
  16. De Carvalho D D, You J S, Jones P A (2010). DNA methylation and cellular reprogramming. Trends Cell Biol, 20(10): 609–617PubMedCrossRefGoogle Scholar
  17. Deaton A M, Bird A (2011). CpG islands and the regulation of transcription. Genes Dev, 25(10): 1010–1022PubMedCrossRefGoogle Scholar
  18. del Mazo J, Prantera G, Torres M, Ferraro M (1994). DNA methylation changes during mouse spermatogenesis. Chromosome Res, 2(2): 147–152PubMedCrossRefGoogle Scholar
  19. Dolinoy D C (2008). The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev, 66(Suppl 1): S7–S11PubMedCrossRefGoogle Scholar
  20. Dolinoy D C, Huang D, Jirtle R L (2007). Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA, 104(32): 13056–13061PubMedCrossRefGoogle Scholar
  21. Dolinoy D C, Weidman J R, Waterland R A, Jirtle R L (2006). Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect, 114(4): 567–572PubMedCrossRefGoogle Scholar
  22. Duhl D M, Vrieling H, Miller K A, Wolff G L, Barsh G S (1994). Neomorphic agouti mutations in obese yellow mice. Nat Genet, 8(1): 59–65PubMedCrossRefGoogle Scholar
  23. Gardiner-Garden M, Frommer M (1987). CpG islands in vertebrate genomes. J Mol Biol, 196(2): 261–282PubMedCrossRefGoogle Scholar
  24. Gisselsson D, Shao C, Tuck-Muller C M, Sogorovic S, Pålsson E, Smeets D, Ehrlich M (2005). Interphase chromosomal abnormalities and mitotic missegregation of hypomethylated sequences in ICF syndrome cells. Chromosoma, 114(2): 118–126PubMedCrossRefGoogle Scholar
  25. Goll M G, Bestor T H (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 74(1): 481–514PubMedCrossRefGoogle Scholar
  26. Govorko D, Bekdash R A, Zhang C, Sarkar D K (2012). Male germline transmits fetal alcohol adverse effect on hypothalamic proopiomelanocortin gene across generations. Biol Psychiatry, 72(5): 378–388PubMedCrossRefGoogle Scholar
  27. Green ML, Singh A V, Zhang Y, Nemeth K A, Sulik K K, Knudsen T B (2007). Reprogramming of genetic networks during initiation of the Fetal Alcohol Syndrome. Dev Dyn, 236(2): 613–631PubMedCrossRefGoogle Scholar
  28. Guo J U, Su Y, Zhong C, Ming G L, Song H (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3): 423–434PubMedCrossRefGoogle Scholar
  29. Heijmans B T, Tobi E W, Stein A D, Putter H, Blauw G J, Susser E S, Slagboom P E, Lumey L H (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA, 105(44): 17046–17049PubMedCrossRefGoogle Scholar
  30. Hermann A, Gowher H, Jeltsch A (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci, 61(19–20): 2571–2587PubMedCrossRefGoogle Scholar
  31. Inoue A, Shen L, Dai Q, He C, Zhang Y (2011). Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res, 21(12): 1670–1676PubMedCrossRefGoogle Scholar
  32. Inoue A, Zhang Y (2011). Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science, 334 (6053): 194PubMedCrossRefGoogle Scholar
  33. Iqbal K, Jin S G, Pfeifer G P, Szabó P E (2011). Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA, 108(9): 3642–3647PubMedCrossRefGoogle Scholar
  34. Ito S, D’Alessio A C, Taranova O V, Hong K, Sowers L C, Zhang Y (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466:1129–1136PubMedCrossRefGoogle Scholar
  35. Ito S, Shen L, Dai Q, Wu S C, Collins L B, Swenberg J A, He C, Zhang Y (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333(6047): 1300–1303PubMedCrossRefGoogle Scholar
  36. Jeffy B D, Chirnomas R B, Romagnolo D F (2002). Epigenetics of breast cancer: polycyclic aromatic hydrocarbons as risk factors. Environ Mol Mutagen, 39(2–3): 235–244PubMedCrossRefGoogle Scholar
  37. Jones P A, Takai D (2001). The role of DNA methylation in mammalian epigenetics. Science, 293(5532): 1068–1070PubMedCrossRefGoogle Scholar
  38. Kaati G, Bygren L O, Edvinsson S (2002). Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet, 10(11): 682–688PubMedCrossRefGoogle Scholar
  39. Kafri T, Gao X, Razin A (1993). Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. Proc Natl Acad Sci USA, 90(22): 10558–10562PubMedCrossRefGoogle Scholar
  40. Kahn H S, Graff M, Stein A D, Lumey L H (2009). A fingerprint marker from early gestation associated with diabetes in middle age: the Dutch Hunger Winter Families Study. Int J Epidemiol, 38(1): 101–109PubMedCrossRefGoogle Scholar
  41. Kaminen-Ahola N, Ahola A, Maga M, Mallitt K A, Fahey P, Cox T C, Whitelaw E, Chong S (2010). Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet, 6(1): e1000811PubMedCrossRefGoogle Scholar
  42. Karymov M A, Tomschik M, Leuba S H, Caiafa P, Zlatanova J (2001). DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: requirement for linker histone. FASEB J, 15(14): 2631–2641PubMedCrossRefGoogle Scholar
  43. Kile M L, Baccarelli A, Hoffman E, Tarantini L, Quamruzzaman Q, Rahman M, Mahiuddin G, Mostofa G, Hsueh Y M, Wright R O, Christiani D C (2012). Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes. Environ Health Perspect, 120(7): 1061–1066PubMedCrossRefGoogle Scholar
  44. Koh K P, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer C A, Mostoslavsky G, Lahesmaa R, Orkin S H, Rodig S J, Daley G Q, Rao A (2011). Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell, 8(2): 200–213PubMedCrossRefGoogle Scholar
  45. Kriaucionis S, Heintz N (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324(5929): 929–930PubMedCrossRefGoogle Scholar
  46. Kucharski R, Maleszka J, Foret S, Maleszka R (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319(5871): 1827–1830PubMedCrossRefGoogle Scholar
  47. Kundakovic M, Champagne F A (2011). Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun, 25(6): 1084–1093PubMedCrossRefGoogle Scholar
  48. Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery J R, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar A H, Thomson J A, Ren B, Ecker J R (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315–322PubMedCrossRefGoogle Scholar
  49. Liu Y, Balaraman Y, Wang G, Nephew K P, Zhou F C (2009). Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics, 4(7): 500–511PubMedCrossRefGoogle Scholar
  50. Lumey L H, Stein A D (2009). Transgenerational effects of prenatal exposure to the Dutch famine. BJOG, 116(6): 868, author reply 868PubMedCrossRefGoogle Scholar
  51. Lumey L H, Stein A D, Kahn H S, van der Pal-de Bruin KM, Blauw G J, Zybert P A, Susser E S (2007). Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol, 36(6): 1196–1204PubMedCrossRefGoogle Scholar
  52. Martínez L, Jiménez V, García-Sepúlveda C, Ceballos F, Delgado J M, Niño-Moreno P, Doniz L, Saavedra-Alanís V, Castillo C G, Santoyo M E, González-Amaro R, Jiménez-Capdeville M E (2011). Impact of early developmental arsenic exposure on promotor CpG-island methylation of genes involved in neuronal plasticity. Neurochem Int, 58(5): 574–581PubMedCrossRefGoogle Scholar
  53. Mason J B, Choi S W (2005). Effects of alcohol on folate metabolism: implications for carcinogenesis. Alcohol, 35(3): 235–241PubMedCrossRefGoogle Scholar
  54. McKay J A, Williams E A, Mathers J C (2004). Folate and DNA methylation during in utero development and aging. Biochem Soc Trans, 32(Pt 6): 1006–1007PubMedGoogle Scholar
  55. Meaney M J, Szyf M (2005). Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci, 7(2): 103–123PubMedGoogle Scholar
  56. Morgan H D, Santos F, Green K, Dean W, Reik W (2005). Epigenetic reprogramming in mammals. Hum Mol Genet, 14(Spec No 1): R47–R58PubMedCrossRefGoogle Scholar
  57. Nakanishi M O, Hayakawa K, Nakabayashi K, Hata K, Shiota K, Tanaka S (2012). Trophoblast-specific DNA methylation occurs after the segregation of the trophectoderm and inner cell mass in the mouse periimplantation embryo. Epigenetics, 7(2): 173–182PubMedCrossRefGoogle Scholar
  58. Okano M, Li E (2002). Genetic analyses of DNA methyltransferase genes in mouse model system. J Nutr, 132(8 Suppl): 2462S–2465SPubMedGoogle Scholar
  59. Otero N K, Thomas J D, Saski C A, Xia X, Kelly S J (2012). Choline supplementation and DNA methylation in the hippocampus and prefrontal cortex of rats exposed to alcohol during development. Alcohol Clin Exp Res, doi: 10.1111/j.1530-0277.2012.01784.xGoogle Scholar
  60. Ouko L A, Shantikumar K, Knezovich J, Haycock P, Schnugh D J, Ramsay M (2009). Effect of alcohol consumption on CpG methylation in the differentially methylated regions of H19 and IGDMR in male gametes-implications for fetal alcohol spectrum disorders. Alcohol Clin Exp Res, 33(9):1615–1627PubMedCrossRefGoogle Scholar
  61. Perera F, Herbstman J (2011). Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol, 31(3): 363–373PubMedCrossRefGoogle Scholar
  62. Pilsner J R, Hu H, Ettinger A, Sánchez B N, Wright R O, Cantonwine D, Lazarus A, Lamadrid-Figueroa H, Mercado-García A, Téllez-RojoM M, Hernández-Avila M (2009). Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect, 117(9): 1466–1471PubMedGoogle Scholar
  63. Ramsahoye B H, Davies C S, Mills K I (1996). DNA methylation: biology and significance. Blood Rev, 10(4): 249–261PubMedCrossRefGoogle Scholar
  64. Schermelleh L, Haemmer A, Spada F, Rösing N, Meilinger D, Rothbauer U, Cardoso M C, Leonhardt H (2007). Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res, 35(13): 4301–4312PubMedCrossRefGoogle Scholar
  65. Schmid M, Haaf T, Grunert D (1984). 5-Azacytidine-induced undercondensations in human chromosomes. Hum Genet, 67(3): 257–263PubMedCrossRefGoogle Scholar
  66. Singh R P, Shiue K, Schomberg D, Zhou F C (2009). Cellular epigenetic modifications of neural stem cell differentiation. Cell Transplant, 18 (10): 1197–1211PubMedCrossRefGoogle Scholar
  67. Stein A D, Zybert P A, van de Bor M, Lumey L H (2004). Intrauterine famine exposure and body proportions at birth: the Dutch Hunger Winter. Int J Epidemiol, 33(4): 831–836PubMedCrossRefGoogle Scholar
  68. Stein A D, Zybert P A, van der Pal-de Bruin K, Lumey L H (2006). Exposure to famine during gestation, size at birth, and blood pressure at age 59 y: evidence from the Dutch Famine. Eur J Epidemiol, 21 (10): 759–765PubMedCrossRefGoogle Scholar
  69. Suter M, Ma J, Harris A, Patterson L, Brown K A, Shope C, Showalter L, Abramovici A, Aagaard-Tillery K M (2011). Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics, 6(11): 1284–1294PubMedCrossRefGoogle Scholar
  70. Szulwach K E, Li X, Li Y, Song C X, Wu H, Dai Q, Irier H, Upadhyay A K, Gearing M, Levey A I, Vasanthakumar A, Godley L A, Chang Q, Cheng X, He C, Jin P (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci, 14:1607–1616PubMedCrossRefGoogle Scholar
  71. Tahiliani M, Koh K P, Shen Y, Pastor W A, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu D R, Aravind L, Rao A (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929): 930–935PubMedCrossRefGoogle Scholar
  72. Tang W Y, Levin L, Talaska G, Cheung Y Y, Herbstman J, Tang D, Miller R L, Perera F, Ho S M (2012). Maternal Exposure to Polycyclic Aromatic Hydrocarbons and 5′-CpG Methylation of Interferon-Γ in Cord White Blood Cells. Environ Health Perspect, 120(8): 1195–1200PubMedCrossRefGoogle Scholar
  73. Tawa R, Ono T, Kurishita A, Okada S, Hirose S (1990). Changes of DNA methylation level during pre- and postnatal periods in mice. Differentiation, 45(1): 44–48PubMedCrossRefGoogle Scholar
  74. Waterland R A, Jirtle R L (2003). Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol, 23(15): 5293–5300PubMedCrossRefGoogle Scholar
  75. Wolffe A P, Jones P L, Wade P A (1999). DNA demethylation. Proc Natl Acad Sci USA, 96(11): 5894–5896PubMedCrossRefGoogle Scholar
  76. Wright R J (2011). Epidemiology of stress and asthma: from constricting communities and fragile families to epigenetics. Immunol Allergy Clin North Am, 31(1): 19–39PubMedCrossRefGoogle Scholar
  77. Wu H, D’Alessio A C, Ito S, Wang Z, Cui K, Zhao K, Sun Y E, Zhang Y (2011). Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev, 25(7): 679–684PubMedCrossRefGoogle Scholar
  78. Wu Q, Ohsako S, Ishimura R, Suzuki J S, Tohyama C (2004). Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2. Biol Reprod, 70(6): 1790–1797PubMedCrossRefGoogle Scholar
  79. Wu S C, Zhang Y (2010). Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol, 11(9): 607–620PubMedCrossRefGoogle Scholar
  80. Xu X F, Cheng F, Du L Z (2011). Epigenetic regulation of pulmonary arterial hypertension. Hypertens Res, 34(9): 981–986PubMedCrossRefGoogle Scholar
  81. Yildirim O, Li R, Hung J H, Chen P B, Dong X, Ee L S, Weng Z, Rando O J, Fazzio T G (2011). Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell, 147(7): 1498–1510PubMedCrossRefGoogle Scholar
  82. Yisraeli J, Frank D, Razin A, Cedar H (1988). Effect of in vitro DNA methylation on beta-globin gene expression. Proc Natl Acad Sci USA, 85(13): 4638–4642PubMedCrossRefGoogle Scholar
  83. Zeisel S H (2007). Gene response elements, genetic polymorphisms and epigenetics influence the human dietary requirement for choline. IUBMB Life, 59(6): 380–387PubMedCrossRefGoogle Scholar
  84. Zhou F C, Balaraman Y, Teng M, Liu Y, Singh R P, Nephew K P (2011a). Alcohol alters DNA methylation patterns and inhibits neural stem cell differentiation. Alcohol Clin Exp Res, 35(4): 735–746PubMedCrossRefGoogle Scholar
  85. Zhou F C, Chen Y, Love A (2011b). Cellular DNA methylation program during neurulation and its alteration by alcohol exposure. Birth Defects Res A Clin Mol Teratol, 91(8): 703–715PubMedCrossRefGoogle Scholar
  86. Zhou F C, Zhao Q, Liu Y, Goodlett C R, Liang T, McClintick J N, Edenberg H J, Li L (2011c). Alteration of gene expression by alcohol exposure at early neurulation. BMC Genomics, 12(1): 124PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Anatomy and Cell Biology, Stark Neuroscience Research InstituteIndiana University School MedicineIndianapolisUSA

Personalised recommendations