Advertisement

Frontiers in Biology

, Volume 8, Issue 1, pp 1–31 | Cite as

DISC1 genetics, biology and psychiatric illness

  • Pippa A. Thomson
  • Elise L.V. Malavasi
  • Ellen Grünewald
  • Dinesh C. Soares
  • Malgorzata Borkowska
  • J. Kirsty Millar
Review

Abstract

Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points toward DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain.

Keywords

DISC1 schizophrenia depression genetics neural pathways 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abazyan B, Nomura J, Kannan G, Ishizuka K, Tamashiro K L, Nucifora F, Pogorelov V, Ladenheim B, Yang C, Krasnova I N, Cadet J L, Pardo C, Mori S, Kamiya A, Vogel M W, Sawa A, Ross C A, Pletnikov M V (2010). Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry, 68(12): 1172–1181CrossRefPubMedGoogle Scholar
  2. Alkhaja A K, Jans D C, Nikolov M, Vukotic M, Lytovchenko O, Ludewig F, Schliebs W, Riedel D, Urlaub H, Jakobs S, Deckers M (2012). MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Mol Biol Cell, 23(2): 247–257CrossRefPubMedGoogle Scholar
  3. Alkuraya F S, Cai X, Emery C, Mochida G H, Al-Dosari MS, Felie JM, Hill R S, Barry B J, Partlow J N, Gascon G G, Kentab A, Jan M, Shaheen R, Feng Y, Walsh C A (2011). Human mutations in NDE1 cause extreme microcephaly with lissencephaly [corrected]. Am J Hum Genet, 88(5): 536–547 (corrected)CrossRefPubMedGoogle Scholar
  4. Amador-Arjona A, Elliott J, Miller A, Ginbey A, Pazour G J, Enikolopov G, Roberts A J, Terskikh A V (2011). Primary cilia regulate proliferation of amplifying progenitors in adult hippocampus: implications for learning and memory. J Neurosci, 31(27): 9933–9944CrossRefPubMedGoogle Scholar
  5. Ameri K, Harris A L (2008). Activating transcription factor 4. Int J Biochem Cell Biol, 40(1): 14–21CrossRefPubMedGoogle Scholar
  6. Ames A 3rd (2000). CNS energy metabolism as related to function. Brain Res Brain Res Rev, 34(1–2): 42–68CrossRefPubMedGoogle Scholar
  7. An J, Shi J, He Q, Lui K, Liu Y, Huang Y, Sheikh MS (2012). CHCM1/CHCHD6, novel mitochondrial protein linked to regulation of mitofilin and mitochondrial cristae morphology. J Biol Chem, 287(10): 7411–7426CrossRefPubMedGoogle Scholar
  8. Andreasen N C, Wilcox M A, Ho B C, Epping E, Ziebell S, Zeien E, Weiss B, Wassink T (2011). Statistical epistasis and progressive brain change in schizophrenia: an approach for examining the relationships between multiple genes. Mol Psychiatry, doi: 10.1038/mp.2011.108Google Scholar
  9. Atkin T A, Brandon N J, Kittler J T (2012). Disrupted in Schizophrenia 1 forms pathological aggresomes that disrupt its function in intracellular transport. Hum Mol Genet, 21(9): 2017–2028CrossRefPubMedGoogle Scholar
  10. Atkin T A, Macaskill A F, Brandon N J, Kittler J T (2011). Disrupted in Schizophrenia-1 regulates intracellular trafficking of mitochondria in neurons. Mol Psychiatry, 16: 121–124CrossRefGoogle Scholar
  11. Austin C P, Ky B, Ma L, Morris J A, Shughrue P J (2004). Expression of Disrupted-In-Schizophrenia-1, a schizophrenia-associated gene, is prominent in the mouse hippocampus throughout brain development. Neuroscience, 124(1): 3–10CrossRefPubMedGoogle Scholar
  12. Ayalew M, Le-Niculescu H, Levey D F, Jain N, Changala B, Patel S D, Winiger E, Breier A, Shekhar A, Amdur R, Koller D, Nurnberger J I, Corvin A, Geyer M, Tsuang M T, Salomon D, Schork N J, Fanous A H, O’Donovan M C, Niculescu A B (2012). Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry, 17(9): 887–905CrossRefPubMedGoogle Scholar
  13. Bakircioglu M, Carvalho O P, Khurshid M, Cox J J, Tuysuz B, Barak T, Yilmaz S, Caglayan O, Dincer A, Nicholas A K, Quarrell O, Springell K, Karbani G, Malik S, Gannon C, Sheridan E, Crosier M, Lisgo S N, Lindsay S, Bilguvar K, Gergely F, Gunel M, Woods C G (2011). The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis. Am J Hum Genet, 88(5): 523–535CrossRefPubMedGoogle Scholar
  14. Bartsch D, Ghirardi M, Skehel P A, Karl K A, Herder S P, Chen M, Bailey C H, Kandel E R (1995). Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell, 83(6): 979–992CrossRefPubMedGoogle Scholar
  15. Beecham G W, Martin E R, Li Y J, Slifer M A, Gilbert J R, Haines J L, Pericak-Vance M A (2009). Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am J Hum Genet, 84(1): 35–43CrossRefPubMedGoogle Scholar
  16. Berbari N F, O’Connor A K, Haycraft C J, Yoder B K (2009). The primary cilium as a complex signaling center. Curr Biol, 19(13): R526–R535CrossRefPubMedGoogle Scholar
  17. Blackwood D H, Fordyce A, Walker M T, St Clair D M, Porteous D J, Muir W J (2001). Schizophrenia and affective disorders—cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet, 69(2): 428–433CrossRefPubMedGoogle Scholar
  18. Boxall R, Porteous D J, Thomson P A (2011). DISC1 and Huntington’s disease—overlapping pathways of vulnerability to neurological disorder? PLoS ONE, 6(1): e16263CrossRefPubMedGoogle Scholar
  19. Bradshaw N J, Christie S, Soares D C, Carlyle B C, Porteous D J, Millar J K (2009). NDE1 and NDEL1: multimerisation, alternate splicing and DISC1 interaction. Neurosci Lett, 449(3): 228–233CrossRefPubMedGoogle Scholar
  20. Bradshaw N J, Ogawa F, Antolin-Fontes B, Chubb J E, Carlyle B C, Christie S, Claessens A, Porteous D J, Millar J K (2008). DISC1, PDE4B, and NDE1 at the centrosome and synapse. Biochem Biophys Res Commun, 377(4): 1091–1096CrossRefPubMedGoogle Scholar
  21. Bradshaw N J, Soares D C, Carlyle B C, Ogawa F, Davidson-Smith H, Christie S, Mackie S, Thomson P A, Porteous D J, Millar J K (2011). PKA phosphorylation of NDE1 is DISC1/PDE4 dependent and modulates its interaction with LIS1 and NDEL1. J Neurosci, 31(24): 9043–9054CrossRefPubMedGoogle Scholar
  22. Brandon N J, Handford E J, Schurov I, Rain J C, Pelling M, Duran-Jimeniz B, Camargo L M, Oliver K R, Beher D, Shearman M S, Whiting P J (2004a). Disrupted in Schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol Cell Neurosci, 25(1): 42–55CrossRefPubMedGoogle Scholar
  23. Brandon N J, Handford E J, Schurov I, Rain J C, Pelling M, Duran-Jimeniz B, Camargo L M, Oliver K R, Beher D, Shearman M S, Whiting P J (2004b). Disrupted in Schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol Cell Neurosci, 25(1): 42–55CrossRefPubMedGoogle Scholar
  24. Brandon N J, Sawa A (2011). Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci, 12(12): 707–722CrossRefPubMedGoogle Scholar
  25. Brauns S, Gollub R L, Roffman J L, Yendiki A, Ho B C, Wassink T H, Heinz A, Ehrlich S (2011). DISC1 is associated with cortical thickness and neural efficiency. Neuroimage, 57(4): 1591–1600CrossRefPubMedGoogle Scholar
  26. Breunig J J, Sarkisian M R, Arellano J I, Morozov Y M, Ayoub A E, Sojitra S, Wang B, Flavell R A, Rakic P, Town T (2008). Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci USA, 105(35): 13127–13132CrossRefPubMedGoogle Scholar
  27. Brown S M, Clapcote S J, Millar J K, Torrance H S, Anderson S M, Walker R, Rampino A, Roder J C, Thomson P A, Porteous D J, Evans K L (2011). Synaptic modulators Nrxn1 and Nrxn3 are disregulated in a Disc1 mouse model of schizophrenia. Mol Psychiatry, 16(6): 585–587CrossRefPubMedGoogle Scholar
  28. Buizer-Voskamp J E, Muntjewerff J W, Strengman E, Sabatti C, Stefansson H, Vorstman J A, Ophoff R A, Genetic Risk and Outcome in Psychosis (GROUP) Consortium Members (2011). Genome-wide analysis shows increased frequency of copy number variation deletions in Dutch schizophrenia patients. Biol Psychiatry, 70(7): 655–662CrossRefPubMedGoogle Scholar
  29. Burdick K E, Kamiya A, Hodgkinson C A, Lencz T, DeRosse P, Ishizuka K, Elashvili S, Arai H, Goldman D, Sawa A, Malhotra A K (2008). Elucidating the relationship between DISC1, NDEL1 and NDE1 and the risk for schizophrenia: evidence of epistasis and competitive binding. Hum Mol Genet, 17(16): 2462–2473CrossRefPubMedGoogle Scholar
  30. Callicott J H, Straub R E, Pezawas L, Egan MF, Mattay V S, Hariri A R, Verchinski B A, Meyer-Lindenberg A, Balkissoon R, Kolachana B, Goldberg T E, Weinberger D R (2005). Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA, 102(24): 8627–8632CrossRefPubMedGoogle Scholar
  31. Camargo LM, Collura V, Rain J C, Mizuguchi K, Hermjakob H, Kerrien S, Bonnert T P, Whiting P J, Brandon N J (2007). Disrupted In Schizophrenia 1 interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry, 12(1): 74–86CrossRefPubMedGoogle Scholar
  32. Cannon T D, Hennah W, van Erp T G, Thompson P M, Lonnqvist J, Huttunen M, Gasperoni T, Tuulio-Henriksson A, Pirkola T, Toga A W, Kaprio J, Mazziotta J, Peltonen L (2005). Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry, 62(11): 1205–1213CrossRefPubMedGoogle Scholar
  33. Carless M A, Glahn D C, Johnson M P, Curran J E, Bozaoglu K, Dyer T D, Winkler A M, Cole S A, Almasy L, Maccluer J W, Duggirala R, Moses E K, Goring H H, Blangero J (2011). Impact of DISC1 variation on neuroanatomical and neurocognitive phenotypes. Mol Psychiatry, 16: 1096–1104, 1063CrossRefPubMedGoogle Scholar
  34. Carlisle H J, Luong T N, Medina-Marino A, Schenker L, Khorosheva E, Indersmitten T, Gunapala K M, Steele A D, O’Dell T J, Patterson P H, Kennedy M B (2011). Deletion of densin-180 results in abnormal behaviors associated with mental illness and reduces mGluR5 and DISC1 in the postsynaptic density fraction. J Neurosci, 31(45): 16194–16207CrossRefPubMedGoogle Scholar
  35. Carlyle B C, Mackie S, Christie S, Millar J K, Porteous D J (2011). Coordinated action of DISC1, PDE4B and GSK3β in modulation of cAMP signalling. Mol Psychiatry, 16(7): 693–694CrossRefPubMedGoogle Scholar
  36. Chakirova G, Whalley H C, Thomson P A, Hennah W, Moorhead T W, Welch K A, Giles S, Hall J, Johnstone E C, Lawrie SM, Porteous D J, Brown V J, McIntosh AM (2011). The effects of DISC1 risk variants on brain activation in controls, patients with bipolar disorder and patients with schizophrenia. Psychiatry Res, 192(1): 20–28CrossRefPubMedGoogle Scholar
  37. Chakravarty M M, Felsky D, Tampakeras M, Lerch J P, Mulsant B H, Kennedy J L, Voineskos A N (2012). DISC1 and Striatal Volume: A potential risk phenotype for mental illness. Front Psychiatry, 3: 57CrossRefPubMedGoogle Scholar
  38. Chen A, Muzzio I A, Malleret G, Bartsch D, Verbitsky M, Pavlidis P, Yonan A L, Vronskaya S, Grody MB, Cepeda I, Gilliam T C, Kandel E R (2003). Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron, 39(4): 655–669CrossRefPubMedGoogle Scholar
  39. Chen S Y, Huang P H, Cheng H J (2011). Disrupted-in-Schizophrenia 1-mediated axon guidance involves TRIO-RAC-PAK small GTPase pathway signaling. Proc Natl Acad Sci USA, 108(14): 5861–5866CrossRefPubMedGoogle Scholar
  40. Chiang C H, Su Y, Wen Z, Yoritomo N, Ross C A, Margolis R L, Song H, Ming G L (2011). Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry, 16(4): 358–360CrossRefPubMedGoogle Scholar
  41. Chiba S, Hashimoto R, Hattori S, Yohda M, Lipska B, Weinberger D R, Kunugi H (2006). Effect of antipsychotic drugs on DISC1 and dysbindin expression in mouse frontal cortex and hippocampus. J Neural Transm, 113(9): 1337–1346CrossRefPubMedGoogle Scholar
  42. Chubb J E, Bradshaw N J, Soares D C, Porteous D J, Millar J K (2008). The DISC locus in psychiatric illness. Mol Psychiatry, 13(1): 36–64CrossRefPubMedGoogle Scholar
  43. Clapcote S J, Lipina T V, Millar J K, Mackie S, Christie S, Ogawa F, Lerch J P, Trimble K, Uchiyama M, Sakuraba Y, Kaneda H, Shiroishi T, Houslay M D, Henkelman R M, Sled J G, Gondo Y, Porteous D J, Roder J C (2007). Behavioral phenotypes of Disc1 missense mutations in mice. Neuron, 54(3): 387–402CrossRefPubMedGoogle Scholar
  44. Clay H B, Sillivan S, Konradi C (2011). Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci, 29(3): 311–324CrossRefPubMedGoogle Scholar
  45. Collins D M, Murdoch H, Dunlop A J, Charych E, Baillie G S, Wang Q, Herberg FW, Brandon N, Prinz A, Houslay MD (2008). Ndel1 alters its conformation by sequestering cAMP-specific phosphodiesterase-4D3 (PDE4D3) in a manner that is dynamically regulated through Protein Kinase A (PKA). Cell Signal, 20(12): 2356–2369CrossRefPubMedGoogle Scholar
  46. Costa-Mattioli M, Gobert D, Stern E, Gamache K, Colina R, Cuello C, Sossin W, Kaufman R, Pelletier J, Rosenblum K, Krnjević K, Lacaille J C, Nader K, Sonenberg N (2007). eIF2α phosphorylation bidirectionally regulates the switch from short-to long-term synaptic plasticity and memory. Cell, 129(1): 195–206CrossRefPubMedGoogle Scholar
  47. Costa-Mattioli M, Sonenberg N (2006). Translational control of longterm synaptic plasticity and memory storage by eIF2α. Crit Rev Neurobiol, 18(1–2): 187–195PubMedGoogle Scholar
  48. Crabbe J C, Wahlsten D, Dudek B C (1999). Genetics of mouse behavior: interactions with laboratory environment. Science, 284(5420): 1670–1672CrossRefPubMedGoogle Scholar
  49. Crepel A, Breckpot J, Fryns J P, De la Marche W, Steyaert J, Devriendt K, Peeters H (2010). DISC1 duplication in two brothers with autism and mild mental retardation. Clin Genet, 77(4): 389–394CrossRefPubMedGoogle Scholar
  50. Crowley J J, Hilliard C E, Kim Y, Morgan MB, Lewis L R, Muzny DM, Hawes A C, Sabo A, Wheeler D A, Lieberman J A, Sullivan P F, Gibbs R A (2012). Deep resequencing and association analysis of schizophrenia candidate genes. Mol Psychiatry. doi: 10.1038/mp.2012.28Google Scholar
  51. da Silva Alves F, Figee M, van Avamelsvoort T, Veltman D, de Haan L (2008). The revised dopamine hypothesis of schizophrenia: evidence from pharmacological MRI studies with atypical antipsychotic medication. Psychopharmacol Bull, 41(1): 121–132PubMedGoogle Scholar
  52. Dammermann A, Merdes A (2002). Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol, 159(2): 255–266CrossRefPubMedGoogle Scholar
  53. De Rienzo G, Bishop J A, Mao Y, Pan L, Ma T P, Moens C B, Tsai L H, Sive H (2011). Disc1 regulates both β-catenin-mediated and noncanonical Wnt signaling during vertebrate embryogenesis. FASEB J, 25(12): 4184–4197CrossRefPubMedGoogle Scholar
  54. Debono R, Topless R, Markie D, Black M A, Merriman T R (2012). Analysis of the DISC1 translocation partner (11q14.3) in genetic risk of schizophrenia. Genes Brain Behav, 11(7): 859–863CrossRefPubMedGoogle Scholar
  55. Di Giorgio A, Blasi G, Sambataro F, Rampino A, Papazacharias A, Gambi F, Romano R, Caforio G, Rizzo M, Latorre V, Popolizio T, Kolachana B, Callicott J H, Nardini M, Weinberger D R, Bertolino A (2008). Association of the SerCys DISC1 polymorphism with human hippocampal formation gray matter and function during memory encoding. Eur J Neurosci, 28(10): 2129–2136CrossRefPubMedGoogle Scholar
  56. Domire J S, Green J A, Lee K G, Johnson A D, Askwith C C, Mykytyn K (2011). Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins. Cell Mol Life Sci, 68(17): 2951–2960CrossRefPubMedGoogle Scholar
  57. Drerup C M, Wiora H M, Topczewski J, Morris J A (2009). Disc1 regulates foxd3 and sox10 expression, affecting neural crest migration and differentiation. Development, 136(15): 2623–2632CrossRefPubMedGoogle Scholar
  58. Duan X, Chang J H, Ge S, Faulkner R L, Kim J Y, Kitabatake Y, Liu X B, Yang C H, Jordan J D, Ma D K, Liu C Y, Ganesan S, Cheng H J, Ming G L, Lu B, Song H (2007). Disrupted In Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell, 130(6): 1146–1158CrossRefPubMedGoogle Scholar
  59. Eastwood S L, Hodgkinson C A, Harrison P J (2009). DISC-1 Leu607Phe alleles differentially affect centrosomal PCM1 localization and neurotransmitter release. Mol Psychiatry, 14(6): 556–557CrossRefPubMedGoogle Scholar
  60. Eastwood S L, Walker M, Hyde TM, Kleinman J E, Harrison P J (2010). The DISC1 Ser704Cys substitution affects centrosomal localization of its binding partner PCM1 in glia in human brain. Hum Mol Genet, 19(12): 2487–2496CrossRefPubMedGoogle Scholar
  61. Enomoto A (2011). Roles of DISC1-interacting protein Girdin in postnatal development and adult neurogenesis in the dentate gyrus. Nihon Shinkei Seishin Yakurigaku Zasshi, 31(1): 23–28PubMedGoogle Scholar
  62. Eykelenboom J E, Briggs G J, Bradshaw N J, Soares D C, Ogawa F, Christie S, Malavasi E L, Makedonopoulou P, Mackie S, Malloy M P, Wear M A, Blackburn E A, Bramham J, McIntosh A M, Blackwood D H, Muir WJ, Porteous D J, Millar J K (2012). A t(1;11) translocation linked to schizophrenia and affective disorders gives rise to aberrant chimeric DISC1 transcripts that encode structurally altered, deleterious mitochondrial proteins. Hum Mol Genet, 21(15): 3374–3386CrossRefPubMedGoogle Scholar
  63. Faulkner R L, Jang M H, Liu X B, Duan X, Sailor K A, Kim J Y, Ge S, Jones E G, Ming G L, Song H, Cheng H J (2008). Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci USA, 105(37): 14157–14162CrossRefPubMedGoogle Scholar
  64. Feng Y, Walsh C A (2004). Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron, 44(2): 279–293CrossRefPubMedGoogle Scholar
  65. Filges I, Röthlisberger B, Boesch N, Weber P, Wenzel F, Huber A R, Heinimann K, Miny P (2010). Interstitial deletion 1q42 in a patient with agenesis of corpus callosum: Phenotype-genotype comparison to the 1q41q42 microdeletion suggests a contiguous 1q4 syndrome. Am J Med Genet A, 152A(4): 987–993CrossRefPubMedGoogle Scholar
  66. Flores R 3rd, Hirota Y, Armstrong B, Sawa A, Tomoda T (2011). DISC1 regulates synaptic vesicle transport via a lithium-sensitive pathway. Neurosci Res, 71(1): 71–77CrossRefPubMedGoogle Scholar
  67. Frank C L, Ge X, Xie Z, Zhou Y, Tsai L H (2010). Control of activating transcription factor 4 (ATF4) persistence by multisite phosphorylation impacts cell cycle progression and neurogenesis. J Biol Chem, 285(43): 33324–33337CrossRefPubMedGoogle Scholar
  68. Fujita T, Maturana A D, Ikuta J, Hamada J, Walchli S, Suzuki T, Sawa H, Wooten M W, Okajima T, Tatematsu K, Tanizawa K, Kuroda S (2007). Axonal guidance protein FEZ1 associates with tubulin and kinesin motor protein to transport mitochondria in neurites of NGFstimulated PC12 cells. Biochem Biophys Res Commun, 361(3): 605–610CrossRefPubMedGoogle Scholar
  69. Fukuda T, Sugita S, Inatome R, Yanagi S (2010). CAMDI, a novel disrupted in schizophrenia 1 (DISC1)-binding protein, is required for radial migration. J Biol Chem, 285(52): 40554–40561CrossRefPubMedGoogle Scholar
  70. Gasperoni T L, Ekelund J, Huttunen M, Palmer C G, Tuulio-Henriksson A, Lönnqvist J, Kaprio J, Peltonen L, Cannon T D (2003). Genetic linkage and association between chromosome 1q and working memory function in schizophrenia. Am J Med Genet B Neuropsychiatr Genet, 116B(1): 8–16CrossRefPubMedGoogle Scholar
  71. Gentile M, Di Carlo A, Volpe P, Pansini A, Nanna P, Valenzano M C, Buonadonna A L (2003). FISH and cytogenetic characterization of a terminal chromosome 1q deletion: clinical case report and phenotypic implications. Am J Med Genet A, 117A(3): 251–254CrossRefPubMedGoogle Scholar
  72. Gershon E S, Alliey-Rodriguez N, Liu C (2011). After GWAS: searching for genetic risk for schizophrenia and bipolar disorder. Am J Psychiatry, 168(3): 253–256CrossRefPubMedGoogle Scholar
  73. Green E K, Grozeva D, Sims R, Raybould R, Forty L, Gordon-Smith K, Russell E, St Clair D, Young A H, Ferrier I N, Kirov G, Jones I, Jones L, Owen M J, O’Donovan M C, Craddock N (2011). DISC1 exon 11 rare variants found more commonly in schizoaffective spectrum cases than controls. Am J Med Genet B Neuropsychiatr Genet, 156B(4): 490–492PubMedGoogle Scholar
  74. Green E K, Norton N, Peirce T, Grozeva D, Kirov G, Owen M J, O’Donovan M C, Craddock N (2006). Evidence that a DISC1 frameshift deletion associated with psychosis in a single family may not be a pathogenic mutation. Mol Psychiatry, 11(9): 798–799CrossRefPubMedGoogle Scholar
  75. Green T A, Alibhai I N, Unterberg S, Neve R L, Ghose S, Tamminga C A, Nestler E J (2008). Induction of activating transcription factors (ATFs) ATF2, ATF3, and ATF4 in the nucleus accumbens and their regulation of emotional behavior. J Neurosci, 28(9): 2025–2032CrossRefPubMedGoogle Scholar
  76. Greene L A, Lee H Y, Angelastro J M (2009). The transcription factor ATF5: role in neurodevelopment and neural tumors. J Neurochem, 108(1): 11–22CrossRefPubMedGoogle Scholar
  77. Guven A, Gunduz A, Bozoglu T M, Yalcinkaya C, Tolun A (2012). Novel NDE1 homozygous mutation resulting in microhydranencephaly and not microlyssencephaly. Neurogenetics, 13(3): 189–194CrossRefPubMedGoogle Scholar
  78. Han X J, Tomizawa K, Fujimura A, Ohmori I, Nishiki T, Matsushita M, Matsui H (2011). Regulation of mitochondrial dynamics and neurodegenerative diseases. Acta Med Okayama, 65(1): 1–10PubMedGoogle Scholar
  79. Han Y G, Spassky N, Romaguera-Ros M, Garcia-Verdugo J M, Aguilar A, Schneider-Maunoury S, Alvarez-Buylla A (2008). Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci, 11(3): 277–284CrossRefPubMedGoogle Scholar
  80. Händel M, Schulz S, Stanarius A, Schreff M, Erdtmann-Vourliotis M, Schmidt H, Wolf G, Höllt V (1999). Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience, 89(3): 909–926CrossRefPubMedGoogle Scholar
  81. Hanson N D, Owens M J, Nemeroff C B (2011). Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology, 36(13): 2589–2602CrossRefPubMedGoogle Scholar
  82. Haque F N, Lipina T V, Roder J C, Wong A H (2012). Social defeat interacts with Disc1 mutations in the mouse to affect behavior. Behav Brain Res, 233(2): 337–344CrossRefPubMedGoogle Scholar
  83. Harris S E, Hennah W, Thomson P A, Luciano M, Starr J M, Porteous D J, Deary I J (2010). Variation in DISC1 is associated with anxiety, depression and emotional stability in elderly women. Mol Psychiatry, 15(3): 232–234CrossRefPubMedGoogle Scholar
  84. Hashimoto R, Numakawa T, Ohnishi T, Kumamaru E, Yagasaki Y, Ishimoto T, Mori T, Nemoto K, Adachi N, Izumi A, Chiba S, Noguchi H, Suzuki T, Iwata N, Ozaki N, Taguchi T, Kamiya A, Kosuga A, Tatsumi M, Kamijima K, Weinberger D R, Sawa A, Kunugi H (2006). Impact of the DISC1 Ser704Cys polymorphism on risk for major depression, brain morphology and ERK signaling. Hum Mol Genet, 15(20): 3024–3033CrossRefPubMedGoogle Scholar
  85. Hayashi-Takagi A, Takaki M, Graziane N, Seshadri S, Murdoch H, Dunlop A J, Makino Y, Seshadri A J, Ishizuka K, Srivastava D P, Xie Z, Baraban J M, Houslay M D, Tomoda T, Brandon N J, Kamiya A, Yan Z, Penzes P, Sawa A (2010). Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat Neurosci, 13(3): 327–332CrossRefPubMedGoogle Scholar
  86. Hennah W, Porteous D (2009). The DISC1 pathway modulates expression of neurodevelopmental, synaptogenic and sensory perception genes. PLoS ONE, 4(3): e4906CrossRefPubMedGoogle Scholar
  87. Hennah W, Thomson P, McQuillin A, Bass N, Loukola A, Anjorin A, Blackwood D, Curtis D, Deary I J, Harris S E, Isometsä E T, Lawrence J, Lönnqvist J, Muir W, Palotie A, Partonen T, Paunio T, Pylkkö E, Robinson M, Soronen P, Suominen K, Suvisaari J, Thirumalai S, St Clair D, Gurling H, Peltonen L, Porteous D (2009). DISC1 association, heterogeneity and interplay in schizophrenia and bipolar disorder. Mol Psychiatry, 14(9): 865–873CrossRefPubMedGoogle Scholar
  88. Hennah W, Tomppo L, Hiekkalinna T, Palo OM, Kilpinen H, Ekelund J, Tuulio-Henriksson A, Silander K, Partonen T, Paunio T, Terwilliger J D, Lönnqvist J, Peltonen L (2007). Families with the risk allele of DISC1 reveal a link between schizophrenia and another component of the same molecular pathway, NDE1. Hum Mol Genet, 16(5): 453–462CrossRefPubMedGoogle Scholar
  89. Higginbotham H R, Gleeson J G (2007). The centrosome in neuronal development. Trends Neurosci, 30(6): 276–283CrossRefPubMedGoogle Scholar
  90. Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, Wu D, Xue R, Andradé M, Tankou S, Mori S, Gallagher M, Ishizuka K, Pletnikov M, Kida S, Sawa A (2007). Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci USA, 104(36): 14501–14506CrossRefPubMedGoogle Scholar
  91. Hildebrandt F, Benzing T, Katsanis N (2011). Ciliopathies. N Engl J Med, 364(16): 1533–1543CrossRefPubMedGoogle Scholar
  92. Honda A, Miyoshi K, Baba K, Taniguchi M, Koyama Y, Kuroda S, Katayama T, Tohyama M (2004). Expression of fasciculation and elongation protein zeta-1 (FEZ1) in the developing rat brain. Brain Res Mol Brain Res, 122(1): 89–92CrossRefPubMedGoogle Scholar
  93. Hoppins S, Collins S R, Cassidy-Stone A, Hummel E, Devay R M, Lackner L L, Westermann B, Schuldiner M, Weissman J S, Nunnari J (2011). A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol, 195(2): 323–340CrossRefPubMedGoogle Scholar
  94. Hotta Y, Ohnuma T, Hanzawa R, Shibata N, Maeshima H, Baba H, Hatano T, Takebayashi Y, Kitazawa M, Higa M, Suzuki T, Arai H (2011). Association study between Disrupted-in-Schizophrenia-1 (DISC1) and Japanese patients with treatment-resistant schizophrenia (TRS). Prog Neuropsychopharmacol Biol Psychiatry, 35(2): 636–639CrossRefPubMedGoogle Scholar
  95. Houlihan L M, Harris S E, Luciano M, Gow A J, Starr J M, Visscher P M, Deary I J (2009). Replication study of candidate genes for cognitive abilities: the Lothian Birth Cohort 1936. Genes Brain Behav, 8(2): 238–247CrossRefPubMedGoogle Scholar
  96. Houslay M D, Adams D R (2003). PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J, 370(Pt 1): 1–18CrossRefPubMedGoogle Scholar
  97. Ibi D, Nagai T, Koike H, Kitahara Y, Mizoguchi H, Niwa M, Jaaro-Peled H, Nitta A, Yoneda Y, Nabeshima T, Sawa A, Yamada K (2010). Combined effect of neonatal immune activation and mutant DISC1 on phenotypic changes in adulthood. Behav Brain Res, 206(1): 32–37CrossRefPubMedGoogle Scholar
  98. Igarashi T, Izumi H, Uchiumi T, Nishio K, Arao T, Tanabe M, Uramoto H, Sugio K, Yasumoto K, Sasaguri Y, Wang K Y, Otsuji Y, Kohno K (2007). Clock and ATF4 transcription system regulates drug resistance in human cancer cell lines. Oncogene, 26(33): 4749–4760CrossRefPubMedGoogle Scholar
  99. Ikuta J, Maturana A, Fujita T, Okajima T, Tatematsu K, Tanizawa K, Kuroda S (2007). Fasciculation and elongation protein zeta-1 (FEZ1) participates in the polarization of hippocampal neuron by controlling the mitochondrial motility. Biochem Biophys Res Commun, 353(1): 127–132CrossRefPubMedGoogle Scholar
  100. Ingason A, Rujescu D, Cichon S, Sigurdsson E, Sigmundsson T, Pietiläinen OP, Buizer-Voskamp JE, Strengman E, Francks C, Muglia P, Gylfason A, Gustafsson O, Olason P I, Steinberg S, Hansen T, Jakobsen K D, Rasmussen H B, Giegling I, Möller H J, Hartmann A, Crombie C, Fraser G, Walker N, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Bramon E, Kiemeney L A, Franke B, Murray R, Vassos E, Toulopoulou T, Mühleisen T W, Tosato S, Ruggeri M, Djurovic S, Andreassen O A, Zhang Z, Werge T, Ophoff R A, Rietschel M, Nöthen MM, Petursson H, Stefansson H, Peltonen L, Collier D, Stefansson K, St Clair D M, GROUP Investigators (2011). Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Mol Psychiatry, 16(1): 17–25CrossRefPubMedGoogle Scholar
  101. Ishizuka K, Kamiya A, Oh E C, Kanki H, Seshadri S, Robinson J F, Murdoch H, Dunlop A J, Kubo K, Furukori K, Huang B, Zeledon M, Hayashi-Takagi A, Okano H, Nakajima K, Houslay MD, Katsanis N, Sawa A (2011). DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature, 473(7345): 92–96CrossRefPubMedGoogle Scholar
  102. James R, Adams R R, Christie S, Buchanan S R, Porteous D J, Millar J K (2004). Disrupted in Schizophrenia 1 (DISC1) is a multicompartmentalized protein that predominantly localizes to mitochondria. Mol Cell Neurosci, 26(1): 112–122CrossRefPubMedGoogle Scholar
  103. Jepsen K, Rosenfeld M G (2002). Biological roles and mechanistic actions of co-repressor complexes. J Cell Sci, 115(Pt 4): 689–698PubMedGoogle Scholar
  104. Jia P, Wang L, Fanous A H, Pato C N, Edwards T L, Zhao Z, the International Schizophrenia Consortium (2012). Network-assisted investigation of combined causal signals from genome-wide association studies in schizophrenia. PLOS Comput Biol, 8(7): e1002587CrossRefPubMedGoogle Scholar
  105. John G B, Shang Y, Li L, Renken C, Mannella C A, Selker J M, Rangell L, Bennett M J, Zha J (2005). The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell, 16(3): 1543–1554CrossRefPubMedGoogle Scholar
  106. Kähler A K, Rimol L M, Brown A A, Djurovic S, Hartberg C B, Melle I, Dale A M, Andreassen O A, Agartz I (2012). Effect of DISC1 SNPs on brain structure in healthy controls and patients with a history of psychosis. Am J Med Genet B Neuropsychiatr Genet, 159B(6): 722–730CrossRefPubMedGoogle Scholar
  107. Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y, Sawamura N, Park U, Kudo C, Okawa M, Ross C A, Hatten M E, Nakajima K, Sawa A (2005). A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol, 7(12): 1167–1178CrossRefPubMedGoogle Scholar
  108. Kamiya A, Tan P L, Kubo K, Engelhard C, Ishizuka K, Kubo A, Tsukita S, Pulver A E, Nakajima K, Cascella N G, Katsanis N, Sawa A (2008). Recruitment of PCM1 to the centrosome by the cooperative action of DISC1 and BBS4: a candidate for psychiatric illnesses. Arch Gen Psychiatry, 65(9): 996–1006CrossRefPubMedGoogle Scholar
  109. Kang E, Burdick K E, Kim J Y, Duan X, Guo J U, Sailor K A, Jung D E, Ganesan S, Choi S, Pradhan D, Lu B, Avramopoulos D, Christian K, Malhotra A K, Song H, Ming G L (2011). Interaction between FEZ1 and DISC1 in regulation of neuronal development and risk for schizophrenia. Neuron, 72(4): 559–571CrossRefPubMedGoogle Scholar
  110. Karpinski B A, Morle G D, Huggenvik J, Uhler MD, Leiden JM (1992). Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc Natl Acad Sci USA, 89(11): 4820–4824CrossRefPubMedGoogle Scholar
  111. Katsel P, Tan W, Abazyan B, Davis K L, Ross C, Pletnikov M V, Haroutunian V (2011). Expression of mutant human DISC1 in mice supports abnormalities in differentiation of oligodendrocytes. Schizophr Res, 130(1–3): 238–249CrossRefPubMedGoogle Scholar
  112. Kim J Y, Duan X, Liu C Y, Jang M H, Guo J U, Pow-anpongkul N, Kang E, Song H, Ming G L (2009). DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron, 63(6): 761–773CrossRefPubMedGoogle Scholar
  113. Kim J Y, Liu C Y, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott J H, Weinberger D R, Song H, Ming G L (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell, 148(5): 1051–1064CrossRefPubMedGoogle Scholar
  114. Kim S, Zaghloul N A, Bubenshchikova E, Oh E C, Rankin S, Katsanis N, Obara T, Tsiokas L (2011). Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat Cell Biol, 13(4): 351–360CrossRefPubMedGoogle Scholar
  115. Kirkpatrick B, Xu L, Cascella N, Ozeki Y, Sawa A, Roberts R C (2006). DISC1 immunoreactivity at the light and ultrastructural level in the human neocortex. J Comp Neurol, 497(3): 436–450CrossRefPubMedGoogle Scholar
  116. Koike H, Arguello P A, Kvajo M, Karayiorgou M, Gogos J A (2006). Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc Natl Acad Sci USA, 103(10): 3693–3697CrossRefPubMedGoogle Scholar
  117. Korth C (2009). DISCopathies: brain disorders related to DISC1 dysfunction. Rev Neurosci, 20(5–6): 321–330PubMedGoogle Scholar
  118. Korth C (2012). Aggregated proteins in schizophrenia and other chronic mental diseases: DISC1opathies. Prion, 6(2): 134–141CrossRefPubMedGoogle Scholar
  119. Koyanagi S, Hamdan A M, Horiguchi M, Kusunose N, Okamoto A, Matsunaga N, Ohdo S (2011). cAMP-response element (CRE)-mediated transcription by activating transcription factor-4 (ATF4) is essential for circadian expression of the Period2 gene. J Biol Chem, 286(37): 32416–32423CrossRefPubMedGoogle Scholar
  120. Kriegstein A R, Noctor S C (2004). Patterns of neuronal migration in the embryonic cortex. Trends Neurosci, 27(7): 392–399CrossRefPubMedGoogle Scholar
  121. Kristiansen L V, Huerta I, Beneyto M, Meador-Woodruff J H (2007). NMDA receptors and schizophrenia. Curr Opin Pharmacol, 7(1): 48–55CrossRefPubMedGoogle Scholar
  122. Kubo K, Tomita K, Uto A, Kuroda K, Seshadri S, Cohen J, Kaibuchi K, Kamiya A, Nakajima K (2010). Migration defects by DISC1 knockdown in C57BL/6, 129X1/SvJ, and ICR strains via in utero gene transfer and virus-mediated RNAi. Biochem Biophys Res Commun, 400(4): 631–637CrossRefPubMedGoogle Scholar
  123. Kuijpers M, Hoogenraad C C (2011). Centrosomes, microtubules and neuronal development. Mol Cell Neurosci, 48(4): 349–358CrossRefPubMedGoogle Scholar
  124. Kumamoto N, Gu Y, Wang J, Janoschka S, Takemaru K, Levine J, Ge S (2012). A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat Neurosci, 15: 399–405, S391CrossRefPubMedGoogle Scholar
  125. Kuroda K, Yamada S, Tanaka M, Iizuka M, Yano H, Mori D, Tsuboi D, Nishioka T, Namba T, Iizuka Y, Kubota S, Nagai T, Ibi D, Wang R, Enomoto A, Isotani-Sakakibara M, Asai N, Kimura K, Kiyonari H, Abe T, Mizoguchi A, Sokabe M, Takahashi M, Yamada K, Kaibuchi K (2011). Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Hum Mol Genet, 20(23): 4666–4683CrossRefPubMedGoogle Scholar
  126. Kvajo M, McKellar H, Arguello P A, Drew L J, Moore H, MacDermott A B, Karayiorgou M, Gogos J A (2008). A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci USA, 105(19): 7076–7081CrossRefPubMedGoogle Scholar
  127. Kvajo M, McKellar H, Drew L J, Lepagnol-Bestel A M, Xiao L, Levy R J, Blazeski R, Arguello P A, Lacefield C O, Mason C A, Simonneau M, O’Donnell J M, MacDermott A B, Karayiorgou M, Gogos J A (2011). Altered axonal targeting and short-term plasticity in the hippocampus of Disc1 mutant mice. Proc Natl Acad Sci USA, 108(49): E1349–E1358CrossRefPubMedGoogle Scholar
  128. Lam C, Vergnolle M A, Thorpe L, Woodman P G, Allan V J (2010). Functional interplay between LIS1, NDE1 and NDEL1 in dyneindependent organelle positioning. J Cell Sci, 123(Pt 2): 202–212CrossRefPubMedGoogle Scholar
  129. Landers J E, Melki J, Meininger V, Glass J D, van den Berg L H, van Es M A, Sapp P C, van Vught P W, McKenna-Yasek D M, Blauw H M, Cho T J, Polak M, Shi L, Wills AM, Broom WJ, Ticozzi N, Silani V, Ozoguz A, Rodriguez-Leyva I, Veldink J H, Ivinson A J, Saris C G, Hosler B A, Barnes-Nessa A, Couture N, Wokke J H, Kwiatkowski T J Jr, Ophoff R A, Cronin S, Hardiman O, Diekstra F P, Leigh P N, Shaw C E, Simpson C L, Hansen V K, Powell J F, Corcia P, Salachas F, Heath S, Galan P, Georges F, Horvitz H R, Lathrop M, Purcell S, Al-Chalabi A, Brown R H Jr (2009). Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis. Proc Natl Acad Sci USA, 106(22): 9004–9009CrossRefPubMedGoogle Scholar
  130. Le-Niculescu H, Patel S D, Bhat M, Kuczenski R, Faraone S V, Tsuang MT, McMahon F J, Schork N J, Nurnberger J I Jr, Niculescu A B 3rd (2009). Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet, 150B(2): 155–181CrossRefPubMedGoogle Scholar
  131. Lee F H, Fadel MP, Preston-Maher K, Cordes S P, Clapcote S J, Price D J, Roder J C, Wong A H (2011). Disc1 point mutations in mice affect development of the cerebral cortex. J Neurosci, 31(9): 3197–3206CrossRefPubMedGoogle Scholar
  132. Lee J A, Kim H, Lee Y S, Kaang B K (2003). Overexpression and RNA interference of Ap-cyclic AMP-response element binding protein-2, a repressor of long-term facilitation, in Aplysia kurodai sensory-tomotor synapses. Neurosci Lett, 337(1): 9–12CrossRefPubMedGoogle Scholar
  133. Lee M M, Reif A, Schmitt A G (2012). Major depression: A role for hippocampal neurogenesis? Curr Top Behav Neurosci, doi: 10.1007/7854_2012_226Google Scholar
  134. Leliveld S R, Bader V, Hendriks P, Prikulis I, Sajnani G, Requena J R, Korth C (2008). Insolubility of disrupted-in-schizophrenia 1 disrupts oligomer-dependent interactions with nuclear distribution element 1 and is associated with sporadic mental disease. J Neurosci, 28(15): 3839–3845CrossRefPubMedGoogle Scholar
  135. Leliveld S R, Hendriks P, Michel M, Sajnani G, Bader V, Trossbach S, Prikulis I, Hartmann R, Jonas E, Willbold D, Requena J R, Korth C (2009). Oligomer assembly of the C-terminal DISC1 domain (640–854) is controlled by self-association motifs and disease-associated polymorphism S704C. Biochemistry, 48(32): 7746–7755CrossRefPubMedGoogle Scholar
  136. Lemos D R, Goodspeed L, Tonelli L, Antoch M P, Ojeda S R, Urbanski H F (2007). Evidence for circadian regulation of activating transcription factor 5 but not tyrosine hydroxylase by the chromaffin cell clock. Endocrinology, 148(12): 5811–5821CrossRefPubMedGoogle Scholar
  137. Li W, Zhou Y, Jentsch J D, Brown R A, Tian X, Ehninger D, Hennah W, Peltonen L, Lönnqvist J, Huttunen M O, Kaprio J, Trachtenberg J T, Silva A J, Cannon T D (2007). Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophreniarelated phenotypes in mice. Proc Natl Acad Sci USA, 104(46): 18280–18285CrossRefPubMedGoogle Scholar
  138. Li Y, Liu B, Hou B, Qin W, Wang D, Yu C, Jiang T (2012). Less efficient information transfer in Cys-allele carriers of DISC1: A brain network study based on diffusion MRI. Cereb Cortex, doi: 10.1093/cercor/bhs1Google Scholar
  139. Lipina T V, Kaidanovich-Beilin O, Patel S, Wang M, Clapcote S J, Liu F, Woodgett J R, Roder J C (2011). Genetic and pharmacological evidence for schizophrenia-related Disc1 interaction with GSK-3. Synapse, 65(3): 234–248CrossRefPubMedGoogle Scholar
  140. Lipina T V, Niwa M, Jaaro-Peled H, Fletcher P J, Seeman P, Sawa A, Roder J C (2010). Enhanced dopamine function in DISC1-L100P mutant mice: implications for schizophrenia. Genes Brain Behav, 9(7): 777–789CrossRefPubMedGoogle Scholar
  141. Lipina T V, Wang M, Liu F, Roder J C (2012). Synergistic interactions between PDE4B and GSK-3: DISC1 mutant mice. Neuropharmacology, 62(3): 1252–1262CrossRefPubMedGoogle Scholar
  142. Lopez A D, Murray C C (1998). The global burden of disease, 1990–2020. Nat Med, 4(11): 1241–1243CrossRefPubMedGoogle Scholar
  143. Louvi A, Grove E A (2011). Cilia in the CNS: the quiet organelle claims center stage. Neuron, 69(6): 1046–1060CrossRefPubMedGoogle Scholar
  144. Ma L, Liu Y, Ky B, Shughrue P J, Austin C P, Morris J A (2002). Cloning and characterization of Disc1, the mouse ortholog of DISC1 (Disrupted-in-Schizophrenia 1). Genomics, 80(6): 662–672CrossRefPubMedGoogle Scholar
  145. Ma T M, Abazyan S, Abazyan B, Nomura J, Yang C, Seshadri S, Sawa A, Snyder S H, Pletnikov M V (2012). Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol Psychiatry. doi: 10.1038/mp.2012.97Google Scholar
  146. Maeda K, Nwulia E, Chang J, Balkissoon R, Ishizuka K, Chen H, Zandi P, McInnis M G, Sawa A (2006). Differential expression of disrupted-in-schizophrenia (DISC1) in bipolar disorder. Biol Psychiatry, 60(9): 929–935CrossRefPubMedGoogle Scholar
  147. Maher B J, LoTurco J J (2012). Disrupted-in-schizophrenia (DISC1) functions presynaptically at glutamatergic synapses. PLoS ONE, 7(3): e34053CrossRefPubMedGoogle Scholar
  148. Malavasi E L, Ogawa F, Porteous D J, Millar J K (2012). DISC1 variants 37W and 607F disrupt its nuclear targeting and regulatory role in ATF4-mediated transcription. Hum Mol Genet, 21(12): 2779–2792CrossRefPubMedGoogle Scholar
  149. Mao Y, Ge X, Frank C L, Madison J M, Koehler A N, Doud M K, Tassa C, Berry E M, Soda T, Singh K K, Biechele T, Petryshen T L, Moon R T, Haggarty S J, Tsai L H (2009). Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell, 136(6): 1017–1031CrossRefPubMedGoogle Scholar
  150. Marley A, von Zastrow M (2010). DISC1 regulates primary cilia that display specific dopamine receptors. PLoS ONE, 5(5): e10902CrossRefPubMedGoogle Scholar
  151. Mata I, Perez-Iglesias R, Roiz-Santiañez R, Tordesillas-Gutierrez D, Gonzalez-Mandly A, Berja A, Vazquez-Barquero J L, Crespo-Facorro B (2010). Additive effect of NRG1 and DISC1 genes on lateral ventricle enlargement in first episode schizophrenia. Neuroimage, 53(3): 1016–1022CrossRefPubMedGoogle Scholar
  152. Mathieson I, Munafò M R, Flint J (2012). Meta-analysis indicates that common variants at the DISC1 locus are not associated with schizophrenia. Mol Psychiatry, 17(6): 634–641CrossRefPubMedGoogle Scholar
  153. McEvoy J P (2007). The costs of schizophrenia. J Clin Psychiatry, 68(Suppl 14): 4–7PubMedGoogle Scholar
  154. Meyer K D, Morris J A (2009). Disc1 regulates granule cell migration in the developing hippocampus. Hum Mol Genet, 18(17): 3286–3297CrossRefPubMedGoogle Scholar
  155. Meyer-Lindenberg A, Weinberger D R (2006). Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci, 7(10): 818–827CrossRefPubMedGoogle Scholar
  156. Millar J K, Christie S, Porteous D J (2003). Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochem Biophys Res Commun, 311(4): 1019–1025CrossRefPubMedGoogle Scholar
  157. Millar J K, Christie S, Semple C A, Porteous D J (2000a). Chromosomal location and genomic structure of the human translin-associated factor X gene (TRAX; TSNAX) revealed by intergenic splicing to DISC1, a gene disrupted by a translocation segregating with schizophrenia. Genomics, 67(1): 69–77CrossRefPubMedGoogle Scholar
  158. Millar J K, James R, Christie S, Porteous D J (2005a). Disrupted in schizophrenia 1 (DISC1): subcellular targeting and induction of ring mitochondria. Mol Cell Neurosci, 30(4): 477–484CrossRefPubMedGoogle Scholar
  159. Millar J K, Pickard B S, Mackie S, James R, Christie S, Buchanan S R, Malloy M P, Chubb J E, Huston E, Baillie G S, Thomson P A, Hill E V, Brandon N J, Rain J C, Camargo L M, Whiting P J, Houslay M D, Blackwood D H, Muir W J, Porteous D J (2005b). DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science, 310(5751): 1187–1191CrossRefPubMedGoogle Scholar
  160. Millar J K, Wilson-Annan J C, Anderson S, Christie S, Taylor M S, Semple C A, Devon R S, St Clair D M, Muir W J, Blackwood D H, Porteous D J (2000b). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet, 9(9): 1415–1423CrossRefPubMedGoogle Scholar
  161. Miller K E, Sheetz M P (2004). Axonal mitochondrial transport and potential are correlated. J Cell Sci, 117(Pt 13): 2791–2804CrossRefPubMedGoogle Scholar
  162. Miyoshi K, Asanuma M, Miyazaki I, Diaz-Corrales F J, Katayama T, Tohyama M, Ogawa N (2004). DISC1 localizes to the centrosome by binding to kendrin. Biochem Biophys Res Commun, 317(4): 1195–1199CrossRefPubMedGoogle Scholar
  163. Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T, Kuroda S, Katayama T, Tohyama M (2003). Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry, 8(7): 685–694CrossRefPubMedGoogle Scholar
  164. Moens L N, De Rijk P, Reumers J, Van den Bossche MJ, Glassee W, De Zutter S, Lenaerts A S, Nordin A, Nilsson L G, Medina Castello I, Norrback K F, Goossens D, Van Steen K, Adolfsson R, Del-Favero J (2011). Sequencing of DISC1 pathway genes reveals increased burden of rare missense variants in schizophrenia patients from a northern Swedish population. PLoS ONE, 6(8): e23450CrossRefPubMedGoogle Scholar
  165. Morris J A, Kandpal G, Ma L, Austin C P (2003). DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum Mol Genet, 12(13): 1591–1608CrossRefPubMedGoogle Scholar
  166. Mouaffak F, Kebir O, Chayet M, Tordjman S, Vacheron M N, Millet B, Jaafari N, Bellon A, Olié J P, Krebs M O (2011). Association of Disrupted in Schizophrenia 1 (DISC1) missense variants with ultraresistant schizophrenia. Pharmacogenomics J, 11(4): 267–273CrossRefPubMedGoogle Scholar
  167. Murdoch H, Mackie S, Collins D M, Hill E V, Bolger G B, Klussmann E, Porteous D J, Millar J K, Houslay M D (2007). Isoform-selective susceptibility of DISC1/phosphodiesterase-4 complexes to dissociation by elevated intracellular cAMP levels. J Neurosci, 27(35): 9513–9524CrossRefPubMedGoogle Scholar
  168. Murdoch H, Vadrevu S, Prinz A, Dunlop A J, Klussmann E, Bolger G B, Norman J C, Houslay M D (2011). Interaction between LIS1 and PDE4, and its role in cytoplasmic dynein function. J Cell Sci, 124(Pt 13): 2253–2266CrossRefPubMedGoogle Scholar
  169. Mykytyn K, Braun T, Carmi R, Haider N B, Searby C C, Shastri M, Beck G, Wright A F, Iannaccone A, Elbedour K, Riise R, Baldi A, Raas-Rothschild A, Gorman S W, Duhl D M, Jacobson S G, Casavant T, Stone E M, Sheffield V C (2001). Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nat Genet, 28(2): 188–191CrossRefPubMedGoogle Scholar
  170. Nagai T, Kitahara Y, Ibi D, Nabeshima T, Sawa A, Yamada K (2011). Effects of antipsychotics on the behavioral deficits in human dominant-negative DISC1 transgenic mice with neonatal polyI:C treatment. Behav Brain Res, 225(1): 305–310CrossRefPubMedGoogle Scholar
  171. Nakata K, Lipska B K, Hyde T M, Ye T, Newburn E N, Morita Y, Vakkalanka R, Barenboim M, Sei Y, Weinberger D R, Kleinman J E (2009). DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proc Natl Acad Sci USA, 106(37): 15873–15878CrossRefPubMedGoogle Scholar
  172. Namba T, Ming G L, Song H, Waga C, Enomoto A, Kaibuchi K, Kohsaka S, Uchino S (2011). NMDA receptor regulates migration of newly generated neurons in the adult hippocampus via Disrupted-In-Schizophrenia 1 (DISC1). J Neurochem, 118(1): 34–44CrossRefPubMedGoogle Scholar
  173. Narayanan S, Arthanari H, Wolfe M S, Wagner G (2011). Molecular characterization of disrupted in schizophrenia-1 risk variant S704C reveals the formation of altered oligomeric assembly. J Biol Chem, 286(51): 44266–44276CrossRefPubMedGoogle Scholar
  174. Nicodemus K K, Callicott J H, Higier R G, Luna A, Nixon D C, Lipska B K, Vakkalanka R, Giegling I, Rujescu D, St Clair D, Muglia P, Shugart Y Y, Weinberger D R (2010). Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging. Hum Genet, 127(4): 441–452CrossRefPubMedGoogle Scholar
  175. Nigg E A, Raff J W (2009). Centrioles, centrosomes, and cilia in health and disease. Cell, 139(4): 663–678CrossRefPubMedGoogle Scholar
  176. Niwa M, Kamiya A, Murai R, Kubo K, Gruber A J, Tomita K, Lu L, Tomisato S, Jaaro-Peled H, Seshadri S, Hiyama H, Huang B, Kohda K, Noda Y, O’Donnell P, Nakajima K, Sawa A, Nabeshima T (2010). Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron, 65(4): 480–489CrossRefPubMedGoogle Scholar
  177. Olincy A, House R, Gao B, Recksiek P, Phang T L, Sullivan B, Hollis J P, Hopkins J, Shade T, Edwards MG, Vianzon R, Griffiths C, Ceilley J, Helfrich R W, Ritvo J, Weis E, Weiss D, Gault J (2011). Elevated DISC1 transcript levels in PBMCs during acute psychosis in patients with schizophrenia. Transl Biomed, 2(1): pii183Google Scholar
  178. Osbun N, Li J, O’Driscoll M C, Strominger Z, Wakahiro M, Rider E, Bukshpun P, Boland E, Spurrell C H, Schackwitz W, Pennacchio L A, Dobyns W B, Black G C, Sherr E H (2011). Genetic and functional analyses identify DISC1 as a novel callosal agenesis candidate gene. Am J Med Genet A, 155A(8): 1865–1876PubMedGoogle Scholar
  179. Ott C, Ross K, Straub S, Thiede B, Götz M, Goosmann C, Krischke M, Mueller M J, Krohne G, Rudel T, Kozjak-Pavlovic V (2012). Sam50 functions in mitochondrial intermembrane space bridging and biogenesis of respiratory complexes. Mol Cell Biol, 32(6): 1173–1188CrossRefPubMedGoogle Scholar
  180. Ottis P, Bader V, Trossbach S V, Kretzschmar H, Michel M, Leliveld S R, Korth C (2011). Convergence of two independent mental disease genes on the protein level: recruitment of dysbindin to cell-invasive disrupted-in-schizophrenia 1 aggresomes. Biol Psychiatry, 70(7): 604–610CrossRefPubMedGoogle Scholar
  181. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K, Okawa M, Yamada N, Hatten M E, Snyder S H, Ross C A, Sawa A (2003). Disrupted In Schizophrenia 1 (DISC1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA, 100(1): 289–294CrossRefPubMedGoogle Scholar
  182. Palo O M, Antila M, Silander K, Hennah W, Kilpinen H, Soronen P, Tuulio-Henriksson A, Kieseppä T, Partonen T, Lönnqvist J, Peltonen L, Paunio T (2007). Association of distinct allelic haplotypes of DISC1 with psychotic and bipolar spectrum disorders and with underlying cognitive impairments. Hum Mol Genet, 16(20): 2517–2528CrossRefPubMedGoogle Scholar
  183. Papaleo F, Lipska B K, Weinberger D R (2012). Mouse models of genetic effects on cognition: relevance to schizophrenia. Neuropharmacology, 62(3): 1204–1220CrossRefPubMedGoogle Scholar
  184. Park Y U, Jeong J, Lee H, Mun J Y, Kim J H, Lee J S, Nguyen MD, Han S S, Suh P G, Park S K (2010). Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proc Natl Acad Sci USA, 107(41): 17785–17790CrossRefPubMedGoogle Scholar
  185. Paspalas C D, Wang M, Arnsten A F (2012). Constellation of HCN channels and cAMP regulating proteins in dendritic spines of the primate prefrontal cortex: Potential substrate for working memory deficits in schizophrenia. Cereb Cortex.Google Scholar
  186. Paul L K, Brown WS, Adolphs R, Tyszka J M, Richards L J, Mukherjee P, Sherr E H (2007). Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci, 8(4): 287–299CrossRefPubMedGoogle Scholar
  187. Pletnikov M V, Ayhan Y, Nikolskaia O, Xu Y, Ovanesov M V, Huang H, Mori S, Moran T H, Ross C A (2008). Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol Psychiatry 13: 173–186, 115CrossRefPubMedGoogle Scholar
  188. Pogorelov V M, Nomura J, Kim J, Kannan G, Ayhan Y, Yang C, Taniguchi Y, Abazyan B, Valentine H, Krasnova I N, Kamiya A, Cadet J L, Wong D F, Pletnikov M V (2012). Mutant DISC1 affects methamphetamine-induced sensitization and conditioned place preference: a comorbidity model. Neuropharmacology, 62(3): 1242–1251CrossRefPubMedGoogle Scholar
  189. Porteous D (2008). Genetic causality in schizophrenia and bipolar disorder: out with the old and in with the new. Curr Opin Genet Dev, 18(3): 229–234CrossRefPubMedGoogle Scholar
  190. Prata D P, Mechelli A, Fu C H, Picchioni M, Kane., Kalidindi S, Mcdonald C, Kravariti E, Toulopoulou T, Miorelli A, Murray R, Collier D A, Mcguire P K (2008). Effect of disrupted-inschizophrenia-1 on pre-frontal cortical function. Mol Psychiatry, 13: 915–917, 909CrossRefPubMedGoogle Scholar
  191. Prata D P, Mechelli A, Picchioni M, Fu C H, Kane F, Kalidindi S, McDonald C, Kravariti E, Toulopoulou T, Bramon E, Walshe M, Murray R, Collier D A, McGuire P K (2011). No association of Disrupted-in-Schizophrenia-1 variation with prefrontal function in patients with schizophrenia and bipolar disorder. Genes Brain Behav, 10(3): 276–285CrossRefPubMedGoogle Scholar
  192. Puthuran MJ, Rowland-Hill C A, Simpson J, Pairaudeau PW, Mabbott J L, Morris S M, Crow Y J (2005). Chromosome 1q42 deletion and agenesis of the corpus callosum. Am J Med Genet A, 138(1): 68–69PubMedGoogle Scholar
  193. Ram Murthy A, Purushottam M, Kiran Kumar H B, Vallikiran M, Krishna N, Jayramu Sriharsha K, Janardhan Reddy Y C, Ghosh S, Jain S (2012). Gender-specific association of TSNAX/DISC1 locus for schizophrenia and bipolar affective disorder in South Indian population. J Hum Genet, 57(8): 523–530CrossRefPubMedGoogle Scholar
  194. Ramsey A J, Milenkovic M, Oliveira A F, Escobedo-Lozoya Y, Seshadri S, Salahpour A, Sawa A, Yasuda R, Caron M G (2011). Impaired NMDA receptor transmission alters striatal synapses and DISC1 protein in an age-dependent manner. Proc Natl Acad Sci USA, 108(14): 5795–5800CrossRefPubMedGoogle Scholar
  195. Rastogi A, Zai C, Likhodi O, Kennedy J L, Wong A H (2009). Genetic association and post-mortem brain mRNA analysis of DISC1 and related genes in schizophrenia. Schizophr Res, 114(1–3): 39–49CrossRefPubMedGoogle Scholar
  196. Rauch A, Thiel C T, Schindler D, Wick U, Crow Y J, Ekici A B, van Essen A J, Goecke T O, Al-Gazali L, Chrzanowska K H, Zweier C, Brunner H G, Becker K, Curry C J, Dallapiccola B, Devriendt K, Dörfler A, Kinning E, Megarbane A, Meinecke P, Semple R K, Spranger S, Toutain A, Trembath R C, Voss E, Wilson L, Hennekam R, de Zegher F, Dörr H G, Reis A (2008). Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science, 319(5864): 816–819CrossRefPubMedGoogle Scholar
  197. Raznahan A, Lee Y, Long R, Greenstein D, Clasen L, Addington A, Rapoport J L, Giedd J N (2011). Common functional polymorphisms of DISC1 and cortical maturation in typically developing children and adolescents. Mol Psychiatry, 16(9): 917–926CrossRefPubMedGoogle Scholar
  198. Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns W B, Caskey C T, Ledbetter D H (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature, 364(6439): 717–721CrossRefPubMedGoogle Scholar
  199. Rezin G T, Amboni G, Zugno A I, Quevedo J, Streck E L (2009). Mitochondrial dysfunction and psychiatric disorders. Neurochem Res, 34(6): 1021–1029CrossRefPubMedGoogle Scholar
  200. Rice G M, Qi Z, Selzer R, Richmond T, Thompson K, Pauli R M, Yu J (2006). Microdissection-based high-resolution genomic array analysis of two patients with cytogenetically identical interstitial deletions of chromosome 1q but distinct clinical phenotypes. Am J Med Genet A, 140(15): 1637–1643PubMedGoogle Scholar
  201. Rosenbloom K R, Dreszer T R, Pheasant M, Barber G P, Meyer L R, Pohl A, Raney B J, Wang T, Hinrichs A S, Zweig A S, Fujita P A, Learned K, Rhead B, Smith K E, Kuhn R M, Karolchik D, Haussler D, Kent W J (2010). ENCODE whole-genome data in the UCSC Genome Browser. Nucleic Acids Res, 38(Database issue): D620–D625CrossRefPubMedGoogle Scholar
  202. Sachs N A, Sawa A, Holmes S E, Ross C A, DeLisi L E, Margolis R L (2005). A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol Psychiatry, 10(8): 758–764CrossRefPubMedGoogle Scholar
  203. Saetre P, Agartz I, De Franciscis A, Lundmark P, Djurovic S, Kähler A, Andreassen O A, Jakobsen K D, Rasmussen H B, Werge T, Hall H, Terenius L, Jönsson E G (2008). Association between a disrupted-inschizophrenia 1 (DISC1) single nucleotide polymorphism and schizophrenia in a combined Scandinavian case-control sample. Schizophr Res, 106(2–3): 237–241CrossRefPubMedGoogle Scholar
  204. Sasaki S, Shionoya A, Ishida M, Gambello M J, Yingling J, Wynshaw-Boris A, Hirotsune S (2000). A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron, 28(3): 681–696CrossRefPubMedGoogle Scholar
  205. Sawamura N, Ando T, Maruyama Y, Fujimuro M, Mochizuki H, Honjo K, Shimoda M, Toda H, Sawamura-Yamamoto T, Makuch L A, Hayashi A, Ishizuka K, Cascella N G, Kamiya A, Ishida N, Tomoda T, Hai T, Furukubo-Tokunaga K, Sawa A (2008). Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly. Mol Psychiatry, 13: 1138–1148, 1069CrossRefPubMedGoogle Scholar
  206. Sawamura N, Sawamura-Yamamoto T, Ozeki Y, Ross C A, Sawa A (2005). A form of DISC1 enriched in nucleus: altered subcellular distribution in orbitofrontal cortex in psychosis and substance/alcohol abuse. Proc Natl Acad Sci USA, 102(4): 1187–1192CrossRefPubMedGoogle Scholar
  207. Schosser A, Gaysina D, Cohen-Woods S, Chow P C, Martucci L, Craddock N, Farmer A, Korszun A, Gunasinghe C, Gray J, Jones L, Tozzi F, Perry J, Muglia P, Owen MJ, Craig IW, McGuffin P (2010). Association of DISC1 and TSNAX genes and affective disorders in the depression case-control (DeCC) and bipolar affective casecontrol (BACCS) studies. Mol Psychiatry, 15(8): 844–849CrossRefPubMedGoogle Scholar
  208. Schulz P, Steimer T (2009). Neurobiology of circadian systems. CNS Drugs, 23(Suppl 2): 3–13CrossRefPubMedGoogle Scholar
  209. Schumacher J, Laje G, Abou Jamra R, Becker T, Mühleisen T W, Vasilescu C, Mattheisen M, Herms S, Hoffmann P, Hillmer A M, Georgi A, Herold C, Schulze T G, Propping P, Rietschel M, McMahon F J, Nöthen M M, Cichon S (2009). The DISC locus and schizophrenia: evidence from an association study in a central European sample and from a meta-analysis across different European populations. Hum Mol Genet, 18(14): 2719–2727CrossRefPubMedGoogle Scholar
  210. Serretti A, Drago A, De Ronchi D (2009). Lithium pharmacodynamics and pharmacogenetics: focus on inositol mono phosphatase (IMPase), inositol poliphosphatase (IPPase) and glycogen sinthase kinase 3 beta (GSK-3 beta). Curr Med Chem, 16(15): 1917–1948CrossRefPubMedGoogle Scholar
  211. Seshadri S, Kamiya A, Yokota Y, Prikulis I, Kano S, Hayashi-Takagi A, Stanco A, Eom T Y, Rao S, Ishizuka K, Wong P, Korth C, Anton E S, Sawa A (2010). Disrupted-in-Schizophrenia-1 expression is regulated by beta-site amyloid precursor protein cleaving enzyme-1-neuregulin cascade. Proc Natl Acad Sci USA, 107(12): 5622–5627CrossRefPubMedGoogle Scholar
  212. Shaikh M, Hall M H, Schulze K, Dutt A, Li K, Williams I, Walshe M, Constante M, Broome M, Picchioni M, Toulopoulou T, Collier D, Stahl D, Rijsdijk F, Powell J, Murray R M, Arranz M, Bramon E (2011). Effect of DISC1 on the P300 Waveform in Psychosis. Schizophr Bull, doi: 10.1093/schbul/sbr101Google Scholar
  213. Shen S, Lang B, Nakamoto C, Zhang F, Pu J, Kuan S L, Chatzi C, He S, Mackie I, Brandon N J, Marquis K L, Day M, Hurko O, McCaig C D, Riedel G, St Clair D (2008). Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J Neurosci, 28(43): 10893–10904CrossRefPubMedGoogle Scholar
  214. Shimizu S, Matsuzaki S, Hattori T, Kumamoto N, Miyoshi K, Katayama T, Tohyama M (2008). DISC1-kendrin interaction is involved in centrosomal microtubule network formation. Biochem Biophys Res Commun, 377(4): 1051–1056CrossRefPubMedGoogle Scholar
  215. Shinoda T, Taya S, Tsuboi D, Hikita T, Matsuzawa R, Kuroda S, Iwamatsu A, Kaibuchi K (2007). DISC1 regulates neurotrophininduced axon elongation via interaction with Grb2. J Neurosci, 27(1): 4–14CrossRefPubMedGoogle Scholar
  216. Shoji H, Toyama K, Takamiya Y, Wakana S, Gondo Y, Miyakawa T (2012). Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and-L100P mutant mice. BMC Res Notes, 5(1): 108CrossRefPubMedGoogle Scholar
  217. Singh K K, De Rienzo G, Drane L, Mao Y, Flood Z, Madison J, Ferreira M, Bergen S, King C, Sklar P, Sive H, Tsai L H (2011). Common DISC1 polymorphisms disrupt Wnt/GSK3β signaling and brain development. Neuron, 72(4): 545–558CrossRefPubMedGoogle Scholar
  218. Singh K K, Ge X, Mao Y, Drane L, Meletis K, Samuels B A, Tsai L H (2010). Dixdc1 is a critical regulator of DISC1 and embryonic cortical development. Neuron, 67(1): 33–48CrossRefPubMedGoogle Scholar
  219. Siuciak J A, Chapin D S, McCarthy S A, Martin A N (2007). Antipsychotic profile of rolipram: efficacy in rats and reduced sensitivity in mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology (Berl), 192(3): 415–424CrossRefGoogle Scholar
  220. Soares D C, Carlyle B C, Bradshaw N J, Porteous D J (2011). DISC1: structure, function, and therapeutic potential for major mental illness. ACS Chem Neurosci, 2(11): 609–632CrossRefPubMedGoogle Scholar
  221. Song W, Li W, Feng J, Heston L L, Scaringe W A, Sommer S S (2008). Identification of high risk DISC1 structural variants with a 2% attributable risk for schizophrenia. Biochem Biophys Res Commun, 367(3): 700–706CrossRefPubMedGoogle Scholar
  222. Song W, Li W, Noltner K, Yan J, Green E, Grozeva D, Jones I R, Craddock N, Longmate J, Feng J, Sommer S S (2010). Identification of high risk DISC1 protein structural variants in patients with bipolar spectrum disorder. Neurosci Lett, 486(3): 136–140CrossRefPubMedGoogle Scholar
  223. Spiteri E, Konopka G, Coppola G, Bomar J, Oldham M, Ou J, Vernes S C, Fisher S E, Ren B, Geschwind D H (2007). Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. Am J Hum Genet, 81(6): 1144–1157CrossRefPubMedGoogle Scholar
  224. Sprooten E, Sussmann J E, Moorhead T W, Whalley H C, Ffrench-Constant C, Blumberg H P, Bastin M E, Hall J, Lawrie S M, McIntosh A M (2011). Association of white matter integrity with genetic variation in an exonic DISC1 SNP. Mol Psychiatry, 16(7): 685, 688–689CrossRefPubMedGoogle Scholar
  225. Steinecke A, Gampe C, Valkova C, Kaether C, Bolz J (2012). Disruptedin-Schizophrenia 1 (DISC1) is necessary for the correct migration of cortical interneurons. J Neurosci, 32(2): 738–745CrossRefPubMedGoogle Scholar
  226. Stuhlmiller T J, Garcia-Castro M I (2012). Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci, 69(22): 3715–3737CrossRefPubMedGoogle Scholar
  227. Sullivan P F, Daly M J, O’Donovan M (2012). Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet, 13(8): 537–551CrossRefPubMedGoogle Scholar
  228. Szeszko P R, Hodgkinson C A, Robinson D G, Derosse P, Bilder R M, Lencz T, Burdick K E, Napolitano B, Betensky J D, Kane J M, Goldman D, Malhotra A K (2008). DISC1 is associated with prefrontal cortical gray matter and positive symptoms in schizophrenia. Biol Psychol, 79(1): 103–110CrossRefPubMedGoogle Scholar
  229. Takahashi T, Suzuki M, Tsunoda M, Maeno N, Kawasaki Y, Zhou S Y, Hagino H, Niu L, Tsuneki H, Kobayashi S, Sasaoka T, Seto H, Kurachi M, Ozaki N (2009). The Disrupted-in-Schizophrenia-1 Ser704Cys polymorphism and brain morphology in schizophrenia. Psychiatry Res, 172(2): 128–135CrossRefPubMedGoogle Scholar
  230. Taya S, Shinoda T, Tsuboi D, Asaki J, Nagai K, Hikita T, Kuroda S, Kuroda K, Shimizu M, Hirotsune S, Iwamatsu A, Kaibuchi K (2007). DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. J Neurosci, 27(1): 15–26CrossRefPubMedGoogle Scholar
  231. Taylor M S, Devon R S, Millar J K, Porteous D J (2003). Evolutionary constraints on the Disrupted in Schizophrenia locus. Genomics, 81(1): 67–77CrossRefPubMedGoogle Scholar
  232. Thomson P A, Harris S E, Starr JM, Whalley L J, Porteous D J, Deary I J (2005). Association between genotype at an exonic SNP in DISC1 and normal cognitive aging. Neurosci Lett, 389(1): 41–45CrossRefPubMedGoogle Scholar
  233. Thomson P A, Macintyre D J, Hamilton G, Dominiczak A, Smith B H, Morris A, Evans K L, Porteous D J (2012). Association of DISC1 variants with age of onset in a population-based sample of recurrent major depression. Mol Psychiatry, doi: 10.1038/mp.2012.117Google Scholar
  234. Tiwary B K (2012). The severity of mental disorders is linked to interaction among candidate genes. Integr Biol (Camb), 4(9): 1096–1101CrossRefGoogle Scholar
  235. Toda H, Mochizuki H, Flores R 3rd, Josowitz R, Krasieva T B, Lamorte V J, Suzuki E, Gindhart J G, Furukubo-Tokunaga K, Tomoda T (2008). UNC-51/ATG1 kinase regulates axonal transport by mediating motor-cargo assembly. Genes Dev, 22(23): 3292–3307CrossRefPubMedGoogle Scholar
  236. Tomita K, Kubo K, Ishii K, Nakajima K (2011). Disrupted-in-Schizophrenia-1 (Disc1) is necessary for migration of the pyramidal neurons during mouse hippocampal development. Hum Mol Genet, 20(14): 2834–2845CrossRefPubMedGoogle Scholar
  237. Trinh M A, Kaphzan H, Wek R C, Pierre P, Cavener D R, Klann E (2012). Brain-specific disruption of the eIF2α kinase PERK decreases ATF4 expression and impairs behavioral flexibility. Cell Rep, 1(6): 676–688CrossRefPubMedGoogle Scholar
  238. Ushijima K, Koyanagi S, Sato Y, Ogata T, Matsunaga N, Fujimura A, Ohdo S (2012). Role of activating transcription factor-4 in 24-hour rhythm of serotonin transporter expression in the mouse midbrain. Mol Pharmacol, 82(2): 264–270CrossRefPubMedGoogle Scholar
  239. Valiente M, Martini F J (2009). Migration of cortical interneurons relies on branched leading process dynamics. Cell Adhes Migr, 3(3): 278–280CrossRefGoogle Scholar
  240. van Os J, Rutten B P, Poulton R (2008). Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull, 34(6): 1066–1082CrossRefPubMedGoogle Scholar
  241. Vernes S C, Nicod J, Elahi F M, Coventry J A, Kenny N, Coupe A M, Bird L E, Davies K E, Fisher S E (2006). Functional genetic analysis of mutations implicated in a human speech and language disorder. Hum Mol Genet, 15(21): 3154–3167CrossRefPubMedGoogle Scholar
  242. Walker R M, Hill A E, Newman A C, Hamilton G, Torrance H S, Anderson S M, Ogawa F, Derizioti P, Nicod J, Vernes S C, Fisher S E, Thomson P A, Porteous D J, Evans K L (2012). The DISC1 promoter: characterization and regulation by FOXP2. Hum Mol Genet, 21(13): 2862–2872CrossRefPubMedGoogle Scholar
  243. Wang Q, Charych E I, Pulito V L, Lee J B, Graziane N M, Crozier R A, Revilla-Sanchez R, Kelly M P, Dunlop A J, Murdoch H, Taylor N, Xie Y, Pausch M, Hayashi-Takagi A, Ishizuka K, Seshadri S, Bates B, Kariya K, Sawa A, Weinberg R J, Moss S J, Houslay M D, Yan Z, Brandon N J (2011a). The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. Mol Psychiatry, 16(10): 1006–1023CrossRefPubMedGoogle Scholar
  244. Wang Y, Kaneko N, Asai N, Enomoto A, Isotani-Sakakibara M, Kato T, Asai M, Murakumo Y, Ota H, Hikita T, Namba T, Kuroda K, Kaibuchi K, Ming G L, Song H, Sawamoto K, Takahashi M (2011b). Girdin is an intrinsic regulator of neuroblast chain migration in the rostral migratory stream of the postnatal brain. J Neurosci, 31(22): 8109–8122CrossRefPubMedGoogle Scholar
  245. Watatani Y, Ichikawa K, Nakanishi N, Fujimoto M, Takeda H, Kimura N, Hirose H, Takahashi S, Takahashi Y (2008). Stress-induced translation of ATF5 mRNA is regulated by the 5′-untranslated region. J Biol Chem, 283(5): 2543–2553CrossRefPubMedGoogle Scholar
  246. Wei Q, Diao F, Kang Z, Gan Z, Han Z, Zheng L, Li L, Guo X, Shan B, Liu C, Zhao J, Zhang J (2012). The effect of DISC1 on regional gray matter density of schizophrenia in Han Chinese population. Neurosci Lett, 517(1): 21–24CrossRefPubMedGoogle Scholar
  247. Whalley H C, Sussmann J E, Johnstone M, Romaniuk L, Redpath H, Chakirova G, Mukherjee P, Hall J, Johnstone E C, Lawrie S M, McIntosh A M (2012). Effects of a mis-sense DISC1 variant on brain activation in two cohorts at high risk of bipolar disorder or schizophrenia. Am J Med Genet B Neuropsychiatr Genet, 159B(3): 343–353CrossRefPubMedGoogle Scholar
  248. Williams JM, Beck T F, Pearson DM, Proud MB, Cheung SW, Scott D A (2009). A 1q42 deletion involving DISC1, DISC2, and TSNAX in an autism spectrum disorder. Am J Med Genet A, 149A(8): 1758–1762CrossRefPubMedGoogle Scholar
  249. Wood J D, Bonath F, Kumar S, Ross C A, Cunliffe V T (2009). Disrupted-in-schizophrenia 1 and neuregulin 1 are required for the specification of oligodendrocytes and neurones in the zebrafish brain. Hum Mol Genet, 18(3): 391–404CrossRefPubMedGoogle Scholar
  250. Wu D, Pan W (2010). GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci, 35(3): 161–168CrossRefPubMedGoogle Scholar
  251. Wulff K, Dijk D J, Middleton B, Foster R G, Joyce E M (2012). Sleep and circadian rhythm disruption in schizophrenia. Br J Psychiatry, 200(4): 308–316CrossRefPubMedGoogle Scholar
  252. Wulff K, Porcheret K, Cussans E, Foster R G (2009). Sleep and circadian rhythm disturbances: multiple genes and multiple phenotypes. Curr Opin Genet Dev, 19(3): 237–246CrossRefPubMedGoogle Scholar
  253. Wynshaw-Boris A (2007). Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development. Clin Genet, 72(4): 296–304CrossRefPubMedGoogle Scholar
  254. Wynshaw-Boris A, Gambello M J (2001). LIS1 and dynein motor function in neuronal migration and development. Genes Dev, 15(6): 639–651CrossRefPubMedGoogle Scholar
  255. Yi M, Weaver D, Hajnóczky G (2004). Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol, 167(4): 661–672CrossRefPubMedGoogle Scholar
  256. Yingling J, Youn Y H, Darling D, Toyo-Oka K, Pramparo T, Hirotsune S, Wynshaw-Boris A (2008). Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell, 132(3): 474–486CrossRefPubMedGoogle Scholar
  257. Young-Pearse T L, Bai J, Chang R, Zheng J B, LoTurco J J, Selkoe D J (2007). A critical function for beta-amyloid precursor protein in neuronal migration revealed by in utero RNA interference. J Neurosci, 27(52): 14459–14469CrossRefPubMedGoogle Scholar
  258. Young-Pearse T L, Suth S, Luth E S, Sawa A, Selkoe D J (2010). Biochemical and functional interaction of disrupted-in-schizophrenia 1 and amyloid precursor protein regulates neuronal migration during mammalian cortical development. J Neurosci, 30(31): 10431–10440CrossRefPubMedGoogle Scholar
  259. Zheng F, Wang L, Jia M, Yue W, Ruan Y, Lu T, Liu J, Li J, Zhang D (2011). Evidence for association between Disrupted-in-Schizophrenia 1 (DISC1) gene polymorphisms and autism in Chinese Han population: a family-based association study. Behav Brain Funct, 7(1): 14CrossRefPubMedGoogle Scholar
  260. Zhou D, Palam L R, Jiang L, Narasimhan J, Staschke K A, Wek R C (2008a). Phosphorylation of eIF2 directs ATF5 translational control in response to diverse stress conditions. J Biol Chem, 283(11): 7064–7073CrossRefPubMedGoogle Scholar
  261. Zhou X, Chen Q, Schaukowitch K, Kelsoe J R, Geyer M A (2010). Insoluble DISC1-Boymaw fusion proteins generated by DISC1 translocation. Mol Psychiatry, 15(7): 669–672CrossRefPubMedGoogle Scholar
  262. Zhou X, Geyer M A, Kelsoe J R (2008 Does disrupted-inschizophrenia (DISC1) generate fusion transcripts? Mol Psychiatry, 13(4): 361–363CrossRefPubMedGoogle Scholar
  263. Zimmerman J E, Naidoo N, Raizen D M, Pack A I (2008). Conservation of sleep: insights from non-mammalian model systems. Trends Neurosci, 31(7): 371–376CrossRefPubMedGoogle Scholar
  264. Zuk O, Hechter E, Sunyaev S R, Lander E S (2012). The mystery of missing heritability: Genetic interactions create phantom heritability. Proc Natl Acad Sci USA, 109(4): 1193–1198CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pippa A. Thomson
    • 1
  • Elise L.V. Malavasi
    • 1
  • Ellen Grünewald
    • 1
    • 2
  • Dinesh C. Soares
    • 1
  • Malgorzata Borkowska
    • 3
  • J. Kirsty Millar
    • 1
  1. 1.The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular MedicineThe University of Edinburgh, Western General HospitalEdinburghUK
  2. 2.Division of PsychiatryThe University of Edinburgh, Royal Edinburgh HospitalEdinburghUK
  3. 3.Centre for Integrative PhysiologyThe University of EdinburghEdinburghUK

Personalised recommendations