Frontiers in Biology

, Volume 7, Issue 4, pp 336–349 | Cite as

Functional protein microarray: an ideal platform for investigating protein binding property

  • Shu-Min Zhou
  • Li Cheng
  • Shu-Juan Guo
  • Heng ZhuEmail author
  • Sheng-Ce TaoEmail author


Functional protein microarray is an important tool for high-throughput and large-scale systems biology studies. Besides the progresses that have been made for protein microarray fabrication, significant advancements have also been achieved for applying protein microarrays on determining a variety of protein biochemical activities. Among these applications, detection of protein binding properties, such as protein-protein interactions (PPIs), protein-DNA interactions (PDIs), protein-RNA interactions, and antigen-antibody interactions, are straightforward and have substantial impacts on many research fields. In this review, we will focus on the recent progresses in protein-protein, protein-DNA, protein-RNA, protein-small molecule, protein-lipid, protein-glycan, and antigen-antibody interactions. We will also discuss the challenges and future directions of protein microarray technologies. We strongly believe that protein microarrays will soon become an indispensible tool for both basic research and clinical applications.


lectin microarray protein microarray protein-cell interaction protein-DNA interaction (PDI) protein-protein interaction (PPI) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angeloni S, Ridet J L, Kusy N, Gao H, Crevoisier F, Guinchard S, Kochhar S, Sigrist H, Sprenger N (2005). Glycoprofiling with microarrays of glycoconjugates and lectins. Glycobiology, 15(1): 31–41PubMedCrossRefGoogle Scholar
  2. Angenendt P, Glökler J, Murphy D, Lehrach H, Cahill D J (2002). Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal Biochem, 309(2): 253–260PubMedCrossRefGoogle Scholar
  3. Apweiler R, Hermjakob H, Sharon N (1999). On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta, 1473(1): 4–8PubMedCrossRefGoogle Scholar
  4. Avseenko N V, Morozova T Y, Ataullakhanov F I, Morozov V N (2002). Immunoassay with multicomponent protein microarrays fabricated by electrospray deposition. Anal Chem, 74(5): 927–933PubMedCrossRefGoogle Scholar
  5. Berger M F, Bulyk M L (2009). Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc, 4(3): 393–411PubMedCrossRefGoogle Scholar
  6. Carlsson J, Mecklenburg M, Lundström I, Danielsson B, Winquist F (2005). Investigation of sera from various species by using lectin affinity arrays and scanning ellipsometry. Anal Chim Acta, 530(2): 167–171CrossRefGoogle Scholar
  7. Charles P T, Goldman E R, Rangasammy J G, Schauer C L, Chen M S, Taitt C R (2004). Fabrication and characterization of 3D hydrogel microarrays to measure antigenicity and antibody functionality for biosensor applications. Biosens Bioelectron, 20(4): 753–764PubMedCrossRefGoogle Scholar
  8. Chen C S, Korobkova E, Chen H, Zhu J, Jian X, Tao S C, He C, Zhu H (2008). A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat Methods, 5(1): 69–74PubMedCrossRefGoogle Scholar
  9. Chen C S, Zhu H (2006). Protein microarrays. Biotechniques, 40(4): 423–429PubMedCrossRefGoogle Scholar
  10. Chen S, Zheng T, Shortreed M R, Alexander C, Smith L M (2007). Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays. Anal Chem, 79(15): 5698–5702PubMedCrossRefGoogle Scholar
  11. Delehanty J B (2004). Printing functional protein microarrays using piezoelectric capillaries. Methods Mol Biol, 264: 135–143PubMedGoogle Scholar
  12. Delehanty J B, Ligler F S (2003). Method for printing functional protein microarrays. Biotechniques, 34(2): 380–385PubMedGoogle Scholar
  13. Ebe Y, Kuno A, Uchiyama N, Koseki-Kuno S, Yamada M, Sato T, Narimatsu H, Hirabayashi J (2006). Application of lectin microarray to crude samples: differential glycan profiling of lec mutants. J Biochem, 139(3): 323–327PubMedCrossRefGoogle Scholar
  14. Evans-Nguyen K M, Tao S C, Zhu H, Cotter R J (2008). Protein arrays on patterned porous gold substrates interrogated with mass spectrometry: detection of peptides in plasma. Anal Chem, 80(5): 1448–1458PubMedCrossRefGoogle Scholar
  15. Fasolo J, Sboner A, Sun M G, Yu H, Chen R, Sharon D, Kim P M, Gerstein M, Snyder M (2011). Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes. Genes Dev, 25(7): 767–778PubMedCrossRefGoogle Scholar
  16. Frojmovic M, Wong T, van de Ven T (1991). Dynamic measurements of the platelet membrane glycoprotein IIb-IIIa receptor for fibrinogen by flow cytometry. I. Methodology, theory and results for two distinct activators. Biophys J, 59(4): 815–827PubMedCrossRefGoogle Scholar
  17. Gao J, Liu D, Wang Z (2010). Screening lectin-binding specificity of bacterium by lectin microarray with gold nanoparticle probes. Anal Chem, 82(22): 9240–9247PubMedCrossRefGoogle Scholar
  18. Gazit Y, Mory A, Etzioni A, Frydman M, Scheuerman O, Gershoni-Baruch R, Garty B Z (2010). Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature. J Clin Immunol, 30(2): 308–313PubMedCrossRefGoogle Scholar
  19. Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung L A, Wise K J, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, Gerstein M, Dumont M E, Phizicky E M, Snyder M, Grayhack E J (2005). Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev, 19(23): 2816–2826PubMedCrossRefGoogle Scholar
  20. Hall D A, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M (2004). Regulation of gene expression by a metabolic enzyme. Science, 306(5695): 482–484PubMedCrossRefGoogle Scholar
  21. Hamelinck D, Zhou H, Li L, Verweij C, Dillon D, Feng Z, Costa J, Haab B B (2005). Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol Cell Proteomics, 4(6): 773–784PubMedCrossRefGoogle Scholar
  22. Hase S, Ikenaka T, Matsushima Y (1978). Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem Biophys Res Commun, 85(1): 257–263PubMedCrossRefGoogle Scholar
  23. He M, Stoevesandt O, Palmer E A, Khan F, Ericsson O, Taussig M J (2008). Printing protein arrays from DNA arrays. Nat Methods, 5(2): 175–177PubMedCrossRefGoogle Scholar
  24. Ho S W, Jona G, Chen C T, Johnston M, Snyder M (2006). Linking DNA-binding proteins to their recognition sequences by using protein microarrays. Proc Natl Acad Sci USA, 103(26): 9940–9945PubMedCrossRefGoogle Scholar
  25. Hsu K L, Mahal L K (2006). A lectin microarray approach for the rapid analysis of bacterial glycans. Nat Protoc, 1(2): 543–549PubMedCrossRefGoogle Scholar
  26. Hsu K L, Pilobello K T, Mahal L K (2006). Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol, 2(3): 153–157PubMedCrossRefGoogle Scholar
  27. Hu S, Li Y, Liu G, Song Q, Wang L, Han Y, Zhang Y, Song Y, Yao X, Tao Y, Zeng H, Yang H, Wang J, Zhu H, Chen Z N, Wu L (2007). A protein chip approach for high-throughput antigen identification and characterization. Proteomics, 7(13): 2151–2161PubMedCrossRefGoogle Scholar
  28. Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, Rho H S, Woodard C, Wang H, Jeong J S, Long S, He X, Wade H, Blackshaw S, Qian J, Zhu H (2009). Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell, 139(3): 610–622PubMedCrossRefGoogle Scholar
  29. Huang J, Zhu H, Haggarty S J, Spring D R, Hwang H, Jin F, Snyder M, Schreiber S L (2004). Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA, 101(47): 16594–16599PubMedCrossRefGoogle Scholar
  30. Jeong J S, Jiang L, Albino E, Marrero J, Rho H S, Hu J, Hu S, Vera C, Bayron-Poueymiroy D, Rivera-Pacheco Z A., Ramos L, Torres-Castro C, Qian J, Bonaventura J, Boeke J D, Yap W Y, Pino I, Eichinger D J, Zhu H, Blackshaw S (2012). Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics, Online Available February 3, 2012Google Scholar
  31. Jeong J S, Rho H S, Zhu H (2011). A functional protein microarray approach to characterizing posttranslational modifications on lysine residues. Methods Mol Biol, 723: 213–223PubMedCrossRefGoogle Scholar
  32. Jones R B, Gordus A, Krall J A, MacBeath G (2006). A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature, 439(7073): 168–174PubMedCrossRefGoogle Scholar
  33. Jones VW, Kenseth J R, Porter M D, Mosher C L, Henderson E (1998). Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays. Anal Chem, 70(7): 1233–1241PubMedCrossRefGoogle Scholar
  34. Kameyama A, Kikuchi N, Nakaya S, Ito H, Sato T, Shikanai T, Takahashi Y, Takahashi K, Narimatsu H (2005). A strategy for identification of oligosaccharide structures using observational multistage mass spectral library. Anal Chem, 77(15): 4719–4725PubMedCrossRefGoogle Scholar
  35. Kamoda S, Kakehi K (2006). Capillary electrophoresis for the analysis of glycoprotein pharmaceuticals. Electrophoresis, 27(12): 2495–2504PubMedCrossRefGoogle Scholar
  36. Kamoda S, Nakanishi Y, Kinoshita M, Ishikawa R, Kakehi K (2006). Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method. J Chromatogr A, 1106(1–2): 67–74PubMedGoogle Scholar
  37. Kollmann K, Pohl S, Marschner K, Encarnação M, Sakwa I, Tiede S, Poorthuis B J, Lübke T, Müller-Loennies S, Storch S, Braulke T (2010). Mannose phosphorylation in health and disease. Eur J Cell Biol, 89(1): 117–123PubMedCrossRefGoogle Scholar
  38. Koshi Y, Nakata E, Yamane H, Hamachi I (2006). A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates. J Am Chem Soc, 128(32): 10413–10422PubMedCrossRefGoogle Scholar
  39. Kramer A, Feilner T, Possling A, Radchuk V, Weschke W, Bürkle L, Kersten B (2004). Identification of barley CK2alpha targets by using the protein microarray technology. Phytochemistry, 65(12): 1777–1784PubMedCrossRefGoogle Scholar
  40. Kuno A, Kato Y, Matsuda A, Kaneko M K, Ito H, Amano K, Chiba Y, Narimatsu H, Hirabayashi J (2009). Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification. Mol Cell Proteomics, 8(1): 99–108PubMedCrossRefGoogle Scholar
  41. Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005). Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods, 2(11): 851–856PubMedCrossRefGoogle Scholar
  42. Kusnezow W, Jacob A, Walijew A, Diehl F, Hoheisel J D (2003). Antibody microarrays: an evaluation of production parameters. Proteomics, 3(3): 254–264PubMedCrossRefGoogle Scholar
  43. Li R, Zhu J, Xie Z, Liao G, Liu J, Chen M R, Hu S, Woodard C, Lin J, Taverna S D, Desai P, Ambinder R F, Hayward G S, Qian J, Zhu H, Hayward S D (2011). Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication. Cell Host Microbe, 10(4): 390–400PubMedCrossRefGoogle Scholar
  44. MacBeath G (2002). Protein microarrays and proteomics. Nat Genet, 32(Suppl): 526–532PubMedCrossRefGoogle Scholar
  45. MacBeath G, Schreiber S L (2000). Printing proteins as microarrays for high-throughput function determination. Science, 289(5485): 1760–1763PubMedGoogle Scholar
  46. Mecklenburg M, Svitel J, Winquist F, Gang J, Ornstein K, Dey E, Bin X, Hedborg E, Norrby R, Arwin H, Lundström I, Danielsson B (2002). Differentiation of human serum samples by surface plasmon resonance monitoring of the integral glycoprotein interaction with a lectin panel. Anal Chim Acta, 459(1): 25–31CrossRefGoogle Scholar
  47. Meng X, Wolfe S A (2006). Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system. Nat Protoc, 1(1): 30–45PubMedCrossRefGoogle Scholar
  48. Michaud G A, Salcius M, Zhou F, Bangham R, Bonin J, Guo H, Snyder M, Predki P F, Schweitzer B I (2003). Analyzing antibody specificity with whole proteome microarrays. Nat Biotechnol, 21(12): 1509–1512PubMedCrossRefGoogle Scholar
  49. Moravcevic K, Mendrola J M, Schmitz K R, Wang Y H, Slochower D, Janmey P A, Lemmon M A (2010). Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell, 143(6): 966–977PubMedCrossRefGoogle Scholar
  50. Nielsen U B, Cardone M H, Sinskey A J, MacBeath G, Sorger P K (2003). Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci USA, 100(16): 9330–9335PubMedCrossRefGoogle Scholar
  51. Ogura Y, Kurokawa K, Ooka T, Tashiro K, Tobe T, Ohnishi M, Nakayama K, Morimoto T, Terajima J, Watanabe H, Kuhara S, Hayashi T (2006). Complexity of the genomic diversity in enterohemorrhagic Escherichia coli O157 revealed by the combinational use of the O157 Sakai OligoDNA microarray and the Whole Genome PCR scanning. DNA Res, 13(1): 3–14PubMedCrossRefGoogle Scholar
  52. Petukhova G V, Pezza R J, Vanevski F, Ploquin M, Masson J Y, Camerini-Otero R D (2005). The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat Struct Mol Biol, 12(5): 449–453PubMedCrossRefGoogle Scholar
  53. Pilobello K T, Krishnamoorthy L, Slawek D, Mahal L K (2005). Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem, 6(6): 985–989PubMedCrossRefGoogle Scholar
  54. Pilobello K T, Mahal L K (2007). Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr Opin Chem Biol, 11(3): 300–305PubMedCrossRefGoogle Scholar
  55. Popescu S C, Popescu G V, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar S P (2009). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 23(1): 80–92PubMedCrossRefGoogle Scholar
  56. Popescu S C, Popescu G V, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar S P (2007a). Differential binding of calmodulin-related proteins to their targets revealed through highdensity Arabidopsis protein microarrays. Proc Natl Acad Sci USA, 104(11): 4730–4735PubMedCrossRefGoogle Scholar
  57. Popescu S C, Snyder M, Dinesh-Kumar S (2007b). Arabidopsis protein microarrays for the high-throughput identification of protein-protein interactions. Plant Signal Behav, 2(5): 416–420PubMedCrossRefGoogle Scholar
  58. Poulain S, Lepelley P, Cambier N, Cosson A, Fenaux P, Wattel E (1999). Assessment of P-glycoprotein expression by immunocytochemistry and flow cytometry using two different monoclonal antibodies coupled with functional efflux analysis in 34 patients with acute myeloid leukemia. Adv Exp Med Biol, 457: 57–63PubMedCrossRefGoogle Scholar
  59. Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney R R, Schmidt M C, Rachidi N, Lee S J, Mah A S, Meng L, Stark M J, Stern D F, de Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki P F, Snyder M (2005). Global analysis of protein phosphorylation in yeast. Nature, 438(7068): 679–684PubMedCrossRefGoogle Scholar
  60. Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau A Y, Walter J C, LaBaer J (2004). Self-assembling protein microarrays. Science, 305(5680): 86–90PubMedCrossRefGoogle Scholar
  61. Roda A, Guardigli M, Russo C, Pasini P, Baraldini M (2000). Protein microdeposition using a conventional ink-jet printer. Biotechniques, 28(3): 492–496PubMedGoogle Scholar
  62. Shamay M, Liu J, Li R, Liao G, Shen L, Greenway M, Hu S, Zhu J, Xie Z, Ambinder R F, Qian J, Zhu H, Hayward S D (2012). A protein array screen for Kaposi’s sarcoma-associated herpesvirus LANA interactors links LANA to TIP60, PP2A activity, and telomere shortening. J Virol, 86(9): 5179–5191PubMedCrossRefGoogle Scholar
  63. Shingyoji M, Gerion D, Pinkel D, Gray J W, Chen F (2005). Quantum dots-based reverse phase protein microarray. Talanta, 67(3): 472–478PubMedCrossRefGoogle Scholar
  64. Stillman B A, Tonkinson J L (2000). FAST slides: a novel surface for microarrays. Biotechniques, 29(3): 630–635PubMedGoogle Scholar
  65. Tao S C, Chen C S, Zhu H (2007). Applications of protein microarray technology. Comb Chem High Throughput Screen, 10(8): 706–718PubMedCrossRefGoogle Scholar
  66. Tao S C, Li Y, Zhou J, Qian J, Schnaar R L, Zhang Y, Goldstein I J, Zhu H, Schneck J P (2008). Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology, 18(10): 761–769PubMedCrossRefGoogle Scholar
  67. Tao S C, Zhu H (2006). Protein chip fabrication by capture of nascent polypeptides. Nat Biotechnol, 24(10): 1253–1254PubMedCrossRefGoogle Scholar
  68. Tateno H, Toyota M, Saito S, Onuma Y, Ito Y, Hiemori K, Fukumura M, Matsushima A, Nakanishi M, Ohnuma K, Akutsu H, Umezawa A, Horimoto K, Hirabayashi J, Asashima M (2011). Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J Biol Chem, 286(23): 20345–20353PubMedCrossRefGoogle Scholar
  69. Tateno H, Uchiyama N, Kuno A, Togayachi A, Sato T, Narimatsu H, Hirabayashi J (2007). A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology, 17(10): 1138–1146PubMedCrossRefGoogle Scholar
  70. Teichmann S A, Babu M M (2004). Gene regulatory network growth by duplication. Nat Genet, 36(5): 492–496PubMedCrossRefGoogle Scholar
  71. The ENCODE (ENCyclopedia Of DNA Elements) Project (2004). Science, 306(5696): 636–640CrossRefGoogle Scholar
  72. Tomiya N, Awaya J, Kurono M, Endo S, Arata Y, Takahashi N (1988). Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal Biochem, 171(1): 73–90PubMedCrossRefGoogle Scholar
  73. Uchiyama N, Kuno A, Koseki-Kuno S, Ebe Y, Horio K, Yamada M, Hirabayashi J (2006). Development of a lectin microarray based on an evanescent-field fluorescence principle. Methods Enzymol, 415: 341–351PubMedCrossRefGoogle Scholar
  74. Wingren C, Borrebaeck C A (2008). Antibody microarray analysis of directly labelled complex proteomes. Curr Opin Biotechnol, 19(1): 55–61PubMedCrossRefGoogle Scholar
  75. Xie Z, Hu S, Blackshaw S, Zhu H, Qian J (2010). hPDI: a database of experimental human protein-DNA interactions. Bioinformatics, 26(2): 287–289PubMedCrossRefGoogle Scholar
  76. Yang L, Guo S, Li Y, Zhou S, Tao S (2011). Protein microarrays for systems biology. Acta Biochim Biophys Sin (Shanghai), 43(3): 161–171CrossRefGoogle Scholar
  77. Zajac A, Song D, Qian W, Zhukov T (2007). Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf B Biointerfaces, 58(2): 309–314PubMedCrossRefGoogle Scholar
  78. Zheng T, Peelen D, Smith L M (2005). Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc, 127(28): 9982–9983PubMedCrossRefGoogle Scholar
  79. Zhou SM, Cheng L, Guo S J, Zhu H, Tao S C (2011). Lectin microarray: a powerful tool for glycan related biomarker discovery. Comb Chem High Throughput Screen, Online Available May 20, 2011Google Scholar
  80. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean R A, Gerstein M, Snyder M (2001). Global analysis of protein activities using proteome chips. Science, 293(5537): 2101–2105PubMedCrossRefGoogle Scholar
  81. Zhu H, Snyder M (2001). Protein arrays and microarrays. Curr Opin Chem Biol, 5(1): 40–45PubMedCrossRefGoogle Scholar
  82. Zhu J, Gopinath K, Murali A, Yi G, Hayward S D, Zhu H, Kao C (2007b). RNA-binding proteins that inhibit RNA virus infection. Proc Natl Acad Sci USA, 104(9): 3129–3134PubMedCrossRefGoogle Scholar
  83. Zhu X, Landry J P, Sun Y S, Gregg J P, Lam K S, Guo X (2007a). Oblique-incidence reflectivity difference microscope for label-free high-throughput detection of biochemical reactions in a microarray format. Appl Opt, 46(10): 1890–1895PubMedCrossRefGoogle Scholar
  84. Zhu X D, Niedernhofer L, Kuster B, Mann M, Hoeijmakers J H, de Lange T (2003). ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNAcontaining double minute chromosomes. Mol Cell, 12(6): 1489–1498PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.State Key Laboratory of Oncogenes and Related GenesShanghaiChina
  3. 3.Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.The High-Throughput Biology CenterJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations