Frontiers in Biology

, 6:377 | Cite as

The trafficking and behavior of cellulose synthase and a glimpse of potential cellulose synthesis regulators

Review

Abstract

Cellulose biosynthesis is a topic of intensive research not only due to the significance of cellulose in the integrity of plant cell walls, but also due to the potential of using cellulose, a natural carbon source, in the production of biofuels. Characterization of the composition, regulation, and trafficking of cellulose synthase complexes (CSCs) is critical to an understanding of cellulose biosynthesis as well as the characterization of additional proteins that contribute to the production of cellulose either through direct interactions with CSCs or through indirect mechanisms. In this review, a highlight of a few proteins that appear to affect cellulose biosynthesis, which includes: KORRIGAN (KOR), Cellulose Synthase-Interactive Protein 1 (CSI1), and the poplar microtubule-associated protein, PttMAP20, will accompany a description of cellulose synthase (CESA) behavior and a discussion of CESA trafficking compartments that might act in the regulation of cellulose biosynthesis.

Keywords

cellulose synthesis cellulose synthase complex (CSC) dynamics trafficking 

References

  1. Arioli T, Peng L, Betzner A S, Burn J, Wittke W, Herth W, Camilleri C, Höfte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson R E (1998). Molecular analysis of cellulose biosynthesis in Arabidopsis. Science, 279(5351): 717–720PubMedCrossRefGoogle Scholar
  2. Benes C H, Wu N, Elia A E H, Dharia T, Cantley L C, Soltoff S P (2005). The C2 domain of PKCδ is a phosphotyrosine binding domain. Cell, 121(2): 271–280PubMedCrossRefGoogle Scholar
  3. Bowling A J, Brown R M Jr (2008). The cytoplasmic domain of the cellulose-synthesizing complex in vascular plants. Protoplasma, 233(1–2): 115–127PubMedCrossRefGoogle Scholar
  4. Carroll A, Specht C D (2011). Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences. Front Plant Genet Genomics, 10.3389/fpls.2011. 00005Google Scholar
  5. Collings D A, Gebbie L K, Howles P A, Hurley U A, Birch R J, Cork A H, Hocart C H, Arioli T, Williamson R E (2008). Arabidopsis dynamin-like protein DRP1A: a null mutant with widespread defects in endocytosis, cellulose synthesis, cytokinesis, and cell expansion. J Exp Bot, 59(2): 361–376PubMedCrossRefGoogle Scholar
  6. Crowell E F, Bischoff V, Desprez T, Rolland A, Stierhof Y D, Schumacher K, Gonneau M, Höfte H, Vernhettes S (2009). Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell, 21(4): 1141–1154PubMedCrossRefGoogle Scholar
  7. Crowell E F, Gonneau M, Stierhof Y D, Höfte H, Vernhettes S (2010). Regulated trafficking of cellulose synthases. Curr Opin Plant Biol, 13(6): 700–705PubMedCrossRefGoogle Scholar
  8. Davletov B A, Südhof T C (1993). A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J Biol Chem, 268(35): 26386–26390PubMedGoogle Scholar
  9. DeBolt S, Gutierrez R, Ehrhardt D W, Somerville C (2007). Nonmotile cellulose synthase subunits repeatedly accumulate within localized regions at the plasma membrane in Arabidopsis hypocotyl cells following 2,6-dichlorobenzonitrile treatment. Plant Physiol, 145(2): 334–338PubMedCrossRefGoogle Scholar
  10. Delmer D P (1999). Cellulose biosynthesis: Exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol, 50(1): 245–276PubMedCrossRefGoogle Scholar
  11. Desprez T, Juraniec M, Crowell E F, Jouy H, Pochylova Z, Parcy F, Höfte H, Gonneau M, Vernhettes S (2007). Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA, 104(39): 15572–15577PubMedCrossRefGoogle Scholar
  12. Dettmer J, Hong-Hermesdorf A, Stierhof Y D, Schumacher K (2006). Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell, 18(3): 715–730PubMedCrossRefGoogle Scholar
  13. Doblin M S, Kurek I, Jacob-Wilk D, Delmer D P (2002). Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol, 43(12): 1407–1420PubMedCrossRefGoogle Scholar
  14. Gardiner J C, Taylor N G, Turner S R (2003). Control of cellulose synthase complex localization in developing xylem. Plant Cell, 15(8): 1740–1748PubMedCrossRefGoogle Scholar
  15. Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A, Sampathkumar A, Baskin T I, Persson S, Somerville C R (2010). Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc Natl Acad Sci USA, 107(29): 12866–12871PubMedCrossRefGoogle Scholar
  16. Gu Y, Somerville C (2010). Cellulose synthase interacting protein: a new factor in cellulose synthesis. Plant Signal Behav, 5(12): 1571–1574PubMedCrossRefGoogle Scholar
  17. Gutierrez R, Lindeboom J J, Paredez A R, Emons A M C, Ehrhardt DW (2009). Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol, 11(7): 797–806PubMedCrossRefGoogle Scholar
  18. Haigler C H, Brown RM Jr (1986). Transport of rosettes from the Golgiapparatus to the plasma-membrane in isolated mesophyll-cells of Zinnia elegans during differentiation to tracheary elements in suspension-culture. Protoplasma, 134(2–3): 111–120CrossRefGoogle Scholar
  19. Kimura S, Laosinchai W, Itoh T, Cui X, Linder C R, Brown R M Jr (1999). Immunogold labeling of rosette terminal cellulosesynthesizing complexes in the vascular plant Vigna angularis. Plant Cell, 11(11): 2075–2086PubMedCrossRefGoogle Scholar
  20. Konopka C A, Bednarek S Y (2008). Comparison of the dynamics and functional redundancy of the Arabidopsis dynamin-related isoforms DRP1A and DRP1C during plant development. Plant Physiol, 147(4): 1590–1602PubMedCrossRefGoogle Scholar
  21. Lane D R, Wiedemeier A, Peng L, Höfte H, Vernhettes S, Desprez T, Hocart C H, Birch R J, Baskin T I, Burn J E, Arioli T, Betzner A S, Williamson R E (2001). Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-1,4-β-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiol, 126(1): 278–288PubMedCrossRefGoogle Scholar
  22. Mølhøj M, Pagant S, Höfte H (2002). Towards understanding the role of membrane-bound endo-β-1,4-glucanases in cellulose biosynthesis. Plant Cell Physiol, 43(12): 1399–1406PubMedCrossRefGoogle Scholar
  23. Mueller S C, Brown R M Jr (1980). Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J Cell Biol, 84(2): 315–326PubMedCrossRefGoogle Scholar
  24. Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Höfte H (1998). A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J, 17(19): 5563–5576PubMedCrossRefGoogle Scholar
  25. Pagant S, Bichet A, Sugimoto K, Lerouxel O, Desprez T, McCann M, Lerouge P, Vernhettes S, Höfte H (2002). KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell, 14(9): 2001–2013PubMedCrossRefGoogle Scholar
  26. Paredez A R, Somerville C R, Ehrhardt D W (2006). Visualization of cellulose synthase demonstrates functional association with microtubules. Science, 312(5779): 1491–1495PubMedCrossRefGoogle Scholar
  27. Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville C R (2007). Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA, 104(39): 15566–15571PubMedCrossRefGoogle Scholar
  28. Rajangam A S, Kumar M, Aspeborg H, Guerriero G, Arvestad L, Pansri P, Brown C J L, Hober S, Blomqvist K, Divne C, Ezcurra I, Mellerowicz E, Sundberg B, Bulone V, Teeri T T (2008). MAP20, a microtubule-associated protein in the secondary cell walls of hybrid aspen, is a target of the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile. Plant Physiol, 148(3): 1283–1294PubMedCrossRefGoogle Scholar
  29. Sato S, Kato T, Kakegawa K, Ishii T, Liu Y G, Awano T, Takabe K, Nishiyama Y, Kuga S, Sato S, Nakamura Y, Tabata S, Shibata D (2001). Role of the putative membrane-bound endo-1,4-β-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana. Plant Cell Physiol, 42(3): 251–263PubMedCrossRefGoogle Scholar
  30. Scheible W R, Eshed R, Richmond T, Delmer D, Somerville C (2001). Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci USA, 98(18): 10079–10084PubMedCrossRefGoogle Scholar
  31. Schindelman G, Morikami A, Jung J, Baskin T I, Carpita N C, Derbyshire P, McCann M C, Benfey P N (2001). COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev, 15(9): 1115–1127PubMedCrossRefGoogle Scholar
  32. Somerville C (2006). Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol, 22(1): 53–78PubMedCrossRefGoogle Scholar
  33. Szyjanowicz P M, McKinnon I, Taylor N G, Gardiner J, Jarvis M C, Turner S R (2004). The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J, 37(5): 730–740PubMedCrossRefGoogle Scholar
  34. Taylor N G, Howells R M, Huttly A K, Vickers K, Turner S R (2003). Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA, 100(3): 1450–1455PubMedCrossRefGoogle Scholar
  35. Taylor N G, Laurie S, Turner S R (2000). Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell, 12(12): 2529–2540PubMedCrossRefGoogle Scholar
  36. Taylor N G, Scheible W R, Cutler S, Somerville C R, Turner S R (1999). The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell, 11(5): 769–780PubMedCrossRefGoogle Scholar
  37. Tewari R, Bailes E, Bunting K A, Coates J C (2010). Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol, 20(8): 470–481PubMedCrossRefGoogle Scholar
  38. Timmers J, Vernhettes S, Desprez T, Vincken J P, Visser R G F, Trindade L M (2009). Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall. FEBS Lett, 583(6): 978–982PubMedCrossRefGoogle Scholar
  39. Wang J, Elliott J E, Williamson R E (2008). Features of the primary wall CESA complex in wild type and cellulose-deficient mutants of Arabidopsis thaliana. J Exp Bot, 59(10): 2627–2637PubMedCrossRefGoogle Scholar
  40. Wightman R, Marshall R, Turner S R (2009). A cellulose synthasecontaining compartment moves rapidly beneath sites of secondary wall synthesis. Plant Cell Physiol, 50(3): 584–594PubMedCrossRefGoogle Scholar
  41. Wightman R, Turner S (2010). Trafficking of the cellulose synthase complex in developing xylem vessels. Biochem Soc Trans, 38(3): 755–760PubMedCrossRefGoogle Scholar
  42. Wightman R, Turner S R (2008). The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J, 54(5): 794–805PubMedCrossRefGoogle Scholar
  43. Xiong G, Li R, Qian Q, Song X, Liu X, Yu Y, Zeng D, Wan J, Li J, Zhou Y (2010). The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis. Plant J, 64(1): 56–70PubMedGoogle Scholar
  44. Zhong R, Burk D H, Morrison W H 3rd, Ye Z H (2004). FRAGILE FIBER3, an Arabidopsis gene encoding a type II inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells. Plant Cell, 16(12): 3242–3259PubMedCrossRefGoogle Scholar
  45. Zhong R, Kays S J, Schroeder B P, Ye Z H (2002). Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell, 14(1): 165–179PubMedCrossRefGoogle Scholar
  46. Zuo J R, Niu Q W, Nishizawa N, Wu Y, Kost B, Chua N H (2000). KORRIGAN, an Arabidopsis endo-1,4-beta-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell, 12(7): 1137–1152PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.The Center for Lignocellulose Structure and Formation, Department of Biochemistry and Molecular BiologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations