Frontiers in Biology

, Volume 6, Issue 2, pp 156–169 | Cite as

Kinases and glutathione transferases: selective and sensitive targeting

Review

Abstract

Kinases, representing almost 500 proteins in the human genome, are responsible for catalyzing the phosphorylation reaction of amino acid residues at their targets. As the largest family of kinases, the protein tyrosine kinases (PTKs) have roles in controlling the essential cellular activities, and their deregulation is generally related to pathologic conditions. The recent efforts on identifying their signal transducer or mediator role in cellular signaling revealed the interaction of PTKs with numerous enzymes of different classes, such as Ser/Thr kinases (STKs), glutathione transferases (GSTs), and receptor tyrosine kinases (RTKs). In either regulation or enhancing the signaling, PTKs are determined in close interaction with these enzymes, under specific cellular conditions, such as oxidative stress and inflammation. In this concept, intensive research on thiol metabolizing enzymes recently showed their involvement in the physiologic functions in cellular signaling besides their well known traditional role in antioxidant defense. The shared signaling components between PTK and GST family enzymes will be discussed in depth in this research review to evaluate the results of recent studies important in drug targeting for therapeutic intervention, such as cell viability, migration, differentiation and proliferation.

Keywords

glutathione transferase protein tyrosine kinase small molecule inhibitors c-Src signal transduction drug targeting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe J, Takahashi M, Ishida M, Lee J D, Berk B C (1997). c-Src is required for oxidative stress-mediated activation of big mitogenactivated protein kinase 1. J Biol Chem, 272(33): 20389–20394PubMedCrossRefGoogle Scholar
  2. Adler V, Pincus M R (2004). Effector peptides from glutathione-Stransferase-pi affect the activation of jun by jun-N-terminal kinase. Ann Clin Lab Sci, 34(1): 35–46PubMedGoogle Scholar
  3. Adler V, Yin Z, Fuchs S Y, Benezra M, Rosario L, Tew K D, Pincus M R, Sardana M, Henderson C J, Wolf C R, Davis R J, Ronai Z (1999a). Regulation of JNK signaling by GSTp. EMBO J, 18(5): 1321–1334PubMedCrossRefGoogle Scholar
  4. Adler V, Yin Z, Tew K D, Ronai Z (1999b). Role of redox potential and reactive oxygen species in stress signaling. Oncogene, 18(45): 6104–6111PubMedCrossRefGoogle Scholar
  5. Allan J M, Wild C P, Rollinson S, Willett E V, Moorman A V, Dovey G J, Roddam P L, Roman E, Cartwright R A, Morgan G J (2001). Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci USA, 98(20): 11592–11597PubMedCrossRefGoogle Scholar
  6. Alvarez R H, Kantarjian H M, Cortes J E (2006). The role of Src in solid and hematologic malignancies: development of new-generation Src inhibitors. Cancer, 107(8): 1918–1929PubMedCrossRefGoogle Scholar
  7. Aydın D, Isgor B S, Isgor Y G, Olgen S, (2010). Evaluation of Novel Indole-3-Imine-2-On Derivatives As Src Kinase and Mammalian Glutathione S-Transferase Inhibitors. 3rd International Meeting on Pharmacy and Pharmaceutical Sciences. Istanbul, Turkey: 119Google Scholar
  8. Baez S, Segura-Aguilar J, Widersten M, Johansson A S, Mannervik B (1997). Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J, 324(Pt 1): 25–28PubMedGoogle Scholar
  9. Ben-Bassat H, Klein B Y (2000). Inhibitors of tyrosine kinases in the treatment of psoriasis. Curr Pharm Des, 6(9): 933–942PubMedCrossRefGoogle Scholar
  10. Berrier A L, Yamada K M (2007). Cell-matrix adhesion. J Cell Physiol, 213(3): 565–573PubMedCrossRefGoogle Scholar
  11. Bjorge J D, Jakymiw A, Fujita D J (2000). Selected glimpses into the activation and function of Src kinase. Oncogene, 19(49): 5620–5635PubMedCrossRefGoogle Scholar
  12. Board P G, Coggan M, Chelvanayagam G, Easteal S, Jermiin L S, Schulte G K, Danley D E, Hoth L R, Griffor M C, Kamath A V, Rosner M H, Chrunyk B A, Perregaux D E, Gabel C A, Geoghegan K F, Pandit J (2000). Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem, 275(32): 24798–24806PubMedCrossRefGoogle Scholar
  13. Bordeleau F, Galarneau L, Gilbert S, Loranger A, Marceau N (2010). Keratin 8/18 modulation of protein kinase C-mediated integrindependent adhesion and migration of liver epithelial cells. Mol Biol Cell, 21(10): 1698–1713PubMedCrossRefGoogle Scholar
  14. Carlucci A, Gedressi C, Lignitto L, Nezi L, Villa-Moruzzi E, Avvedimento E V, Gottesman M, Garbi C, Feliciello A (2008). Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. J Biol Chem, 283(16): 10919–10929PubMedCrossRefGoogle Scholar
  15. Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, Symons M, Borrello S, Galeotti T, Ramponi G (2003). Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol, 161(5): 933–944PubMedCrossRefGoogle Scholar
  16. Cohen P (2000). The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci, 25(12): 596–601PubMedCrossRefGoogle Scholar
  17. Cohen S, Fleischmann R (2010). Kinase inhibitors: a new approach to rheumatoid arthritis treatment. Curr Opin Rheumatol, 22(3): 330–335PubMedCrossRefGoogle Scholar
  18. Cowan-Jacob S W, Fendrich G, Manley P W, Jahnke W, Fabbro D, Liebetanz J, Meyer T (2005). The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure, 13(6): 861–871PubMedCrossRefGoogle Scholar
  19. Crout C A, Koh L P, Gockerman J P, Moore J O, Decastro C, Long G D, Diehl L, Gasparetto C, Niedzwiecki D, Edwards J, Prosnitz L, Horwitz M, Chute J, Morris A, Davis P, Beaven A, Chao N J, Ali-Osman F, Rizzieri D A (2010). Overcoming drug resistance in mantle cell lymphoma using a combination of dose-dense and intense therapy. Cancer Invest, 28(6): 654–660PubMedCrossRefGoogle Scholar
  20. Desmots F, Rissel M, Gilot D, Lagadic-Gossmann D, Morel F, Guguen-Guillouzo C, Guillouzo A, Loyer P (2002). Pro-inflammatory cytokines tumor necrosis factor alpha and interleukin-6 and survival factor epidermal growth factor positively regulate the murine GSTA4 enzyme in hepatocytes. J Biol Chem, 277(20): 17892–17900PubMedCrossRefGoogle Scholar
  21. Di Pietro G, Magno L A, Rios-Santos F (2010). Glutathione Stransferases: an overview in cancer research. Expert Opin Drug Metab Toxicol, 6(2): 153–170PubMedCrossRefGoogle Scholar
  22. Dincer S, Isgor B S, Isgor Y G, Olgen S (2010). Evaluation of Benzimidazole Derivatives as Src Kinase and Mammalian Glutathione S-Transferase Inhibitors. Joint Meeting of 4th International Meeting on Medicinal and Pharmaceutical Chemistry (IMMPC-4) and 6th International Symposium on Pharmaceutical Chemistry (ISPC-6). Ankara, TurkeyGoogle Scholar
  23. Eaton D L, Bammler T K (1999). Concise review of the glutathione Stransferases and their significance to toxicology. Toxicol Sci, 49(2): 156–164PubMedCrossRefGoogle Scholar
  24. Edelman A M, Blumenthal D K, Krebs E G (1987). Protein serine/threonine kinases. Annu Rev Biochem, 56: 567–613PubMedCrossRefGoogle Scholar
  25. Frame M C (2002). Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta, 1602(2): 114–130PubMedGoogle Scholar
  26. Gate L, Majumdar R S, Lunk A, Tew K D (2004). Increased myeloproliferation in glutathione S-transferase pi-deficient mice is associated with a deregulation of JNK and Janus kinase/STAT pathways. J Biol Chem, 279(10): 8608–8616PubMedCrossRefGoogle Scholar
  27. Giamas G, Man Y L, Hirner H, Bischof J, Kramer K, Khan K, Ahmed S S, Stebbing J, Knippschild U (2010). Kinases as targets in the treatment of solid tumors. Cell Signal, 22(7): 984–1002PubMedCrossRefGoogle Scholar
  28. Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P (2005). Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol, 25(15): 6391–6403PubMedCrossRefGoogle Scholar
  29. Grahn E, Novotny M, Jakobsson E, Gustafsson A, Grehn L, Olin B, Madsen D, Wahlberg M, Mannervik B, Kleywegt G J (2006). New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix. Acta Crystallogr D Biol Crystallogr, 62(Pt 2): 197–207PubMedCrossRefGoogle Scholar
  30. Griffith D, Parker J P, Marmion C J (2010). Enzyme inhibition as a key target for the development of novel metal-based anti-cancer therapeutics. Anticancer Agents Med Chem, 10(5): 354–370PubMedGoogle Scholar
  31. Gulick A M, Fahl W E (1995). Forced evolution of glutathione Stransferase to create a more efficient drug detoxication enzyme. Proc Natl Acad Sci USA, 92(18): 8140–8144PubMedCrossRefGoogle Scholar
  32. Ha C H, Bennett A M, Jin Z G (2008). A novel role of vascular endothelial cadherin in modulating c-Src activation and downstream signaling of vascular endothelial growth factor. J Biol Chem, 283(11): 7261–7270PubMedCrossRefGoogle Scholar
  33. Hao Q, Rutherford S A, Low B, Tang H (2006). Suppression of the phosphorylation of receptor tyrosine phosphatase-alpha on the Srcindependent site tyrosine 789 by reactive oxygen species. Mol Pharmacol, 69(6): 1938–1944PubMedCrossRefGoogle Scholar
  34. Harir N, Pecquet C, Kerenyi M, Sonneck K, Kovacic B, Nyga R, Brevet M, Dhennin I, Gouilleux-Gruart V, Beug H, Valent P, Lassoued K, Moriggl R, Gouilleux F (2007). Constitutive activation of Stat5 promotes its cytoplasmic localization and association with PI3-kinase in myeloid leukemias. Blood, 109(4): 1678–1686PubMedCrossRefGoogle Scholar
  35. Hayes J D, Flanagan J U, Jowsey I R (2005). Glutathione transferases. Annu Rev Pharmacol Toxicol, 45(1): 51–88PubMedCrossRefGoogle Scholar
  36. Hayes J D, Pulford D J (1995). The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol, 30(6): 445–600PubMedCrossRefGoogle Scholar
  37. Holm P J, Bhakat P, Jegerschöld C, Gyobu N, Mitsuoka K, Fujiyoshi Y, Morgenstern R, Hebert H (2006). Structural basis for detoxification and oxidative stress protection in membranes. J Mol Biol, 360(5): 934–945PubMedCrossRefGoogle Scholar
  38. Hosono N, Kishi S, Iho S, Urasaki Y, Yoshida A, Kurooka H, Yokota Y, Ueda T (2010). Glutathione S-transferase M1 inhibits dexamethasone-induced apoptosis in association with the suppression of Bim through dual mechanisms in a lymphoblastic leukemia cell line. Cancer Sci, 101(3): 767–773PubMedCrossRefGoogle Scholar
  39. Hsu C H, Chen C L, Hong R L, Chen K L, Lin J F, Cheng A L (2002). Prognostic value of multidrug resistance 1, glutathione-S-transferasepi and p53 in advanced nasopharyngeal carcinoma treated with systemic chemotherapy. Oncology, 62(4): 305–312PubMedCrossRefGoogle Scholar
  40. Hunter T, Cooper J A (1985). Protein-tyrosine kinases. Annu Rev Biochem, 54: 897–930PubMedCrossRefGoogle Scholar
  41. Huveneers S, Danen E H (2009). Adhesion signaling-crosstalk between integrins, Src and Rho. J Cell Sci, 122(Pt 8): 1059–1069PubMedCrossRefGoogle Scholar
  42. Igarashi T, Tomihari N, Ohmori S, Ueno K, Kitagawa H, Satoh T (1986) Comparison of glutathione S-transferases in mouse, guinea pig, rabbit and hamster liver cytosol to those in rat liver. Biochem Int, 13(4): 641–648PubMedGoogle Scholar
  43. Ingley E (2008). Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim Biophys Acta, 1784(1): 56–65PubMedGoogle Scholar
  44. Isgor B S, Coruh N, Iscan M (2010a). Soluble glutathione s-transferases in bovine liver: existence of GST T2. J Biol Sci, 10: 667–675CrossRefGoogle Scholar
  45. Isgor B S, Isgor Y G, Kurt-Kılıc Z, Olgen S (2010b). The Effect of Novel pp60c-src Inhibitors on Mammalian Glutathione S-Transferase Activity. 240th ACS National Meeting & Exposition on “Chemistry of Preventing and Combatting Disease”, Boston, Massachusetts, USAGoogle Scholar
  46. Jope R S, Zhang L, Song L (2000). Peroxynitrite modulates the activation of p38 and extracellular regulated kinases in PC12 cells. Arch Biochem Biophys, 376(2): 365–370PubMedCrossRefGoogle Scholar
  47. Kemble D J, Sun G (2009). Direct and specific inactivation of protein tyrosine kinases in the Src and FGFR families by reversible cysteine oxidation. Proc Natl Acad Sci USA, 106(13): 5070–5075PubMedCrossRefGoogle Scholar
  48. Khadaroo R G, He R, Parodo J, Powers K A, Marshall J C, Kapus A, Rotstein O D (2004). The role of the Src family of tyrosine kinases after oxidant-induced lung injury in vivo. Surgery, 136(2): 483–488PubMedCrossRefGoogle Scholar
  49. Kilic Z, Sener F, Isgor Y G, Coban T, Olgen S (2009). Investigating Antioxidant and Src Kinase Inhibitory Effects of Aminomethylindole Derivatives. 1st Turkish-Russian Joint Meeting on Organic and Medicinal Chemistry. Antalya, Turkey: 51Google Scholar
  50. Kilic-Kurt Z, Isgor Y G, Isgor B S, Olgen S (2010). The Effect Of Novel Indole Derivatives As Inhibitors Of Src Kinase and Mammalian Glutathione S-Transferase. Joint Meeting of 4th International Meeting on Medicinal and Pharmaceutical Chemistry (IMMPC-4) and 6th International Symposium on Pharmaceutical Chemistry (ISPC-6). Ankara, TurkeyGoogle Scholar
  51. Kim S G, Lee S J (2007). PI3K, RSK, and mTOR signal networks for the GST gene regulation. Toxicol Sci, 96(2): 206–213PubMedCrossRefGoogle Scholar
  52. Kim S K, Abdelmegeed M A, Novak R F (2006). Identification of the insulin signaling cascade in the regulation of alpha-class glutathione S-transferase expression in primary cultured rat hepatocytes. J Pharmacol Exp Ther, 316(3): 1255–1261PubMedCrossRefGoogle Scholar
  53. Kim S K, Novak R F (2007). The role of intracellular signaling in insulin-mediated regulation of drug metabolizing enzyme gene and protein expression. Pharmacol Ther, 113(1): 88–120PubMedCrossRefGoogle Scholar
  54. Kim S K, Woodcroft K J, Novak R F (2003). Insulin and glucagon regulation of glutathione S-transferase expression in primary cultured rat hepatocytes. J Pharmacol Exp Ther, 305(1): 353–361PubMedCrossRefGoogle Scholar
  55. Kostyuk V A, Potapovich A I (2009). Mechanisms of the suppression of free radical overproduction by antioxidants. Front Biosci (Elite Ed), 1: 179–188 (Elite Ed)Google Scholar
  56. Kostyuk V A, Potapovich A I, Cesareo E, Brescia S, Guerra L, Valacchi G, Pecorelli A, Deeva I B, Raskovic D, De Luca C, Pastore S, Korkina L G (2010). Dysfunction of glutathione S-transferase leads to excess 4-hydroxy-2-nonenal and H2O2 and impaired cytokine pattern in cultured keratinocytes and blood of vitiligo patients. Antioxid Redox Signal, 13(5): 607–620PubMedCrossRefGoogle Scholar
  57. LaPensee EW, Schwemberger S J, LaPensee C R, Bahassi M, Afton S E, Ben-Jonathan N (2009). Prolactin confers resistance against cisplatin in breast cancer cells by activating glutathione-S-transferase. Carcinogenesis, 30(8): 1298–1304PubMedCrossRefGoogle Scholar
  58. Li J, Xia Z, Ding J (2005). Thioredoxin-like domain of human kappa class glutathione transferase reveals sequence homology and structure similarity to the theta class enzyme. Protein Sci, 14(9): 2361–2369PubMedCrossRefGoogle Scholar
  59. Lindberg R A, Quinn A M, Hunter T (1992). Dual-specificity protein kinases: will any hydroxyl do? Trends Biochem Sci, 17(3): 114–119PubMedCrossRefGoogle Scholar
  60. Lo H W, Antoun G R, Ali-Osman F (2004). The human glutathione Stransferase P1 protein is phosphorylated and its metabolic function enhanced by the Ser/Thr protein kinases, cAMP-dependent protein kinase and protein kinase C, in glioblastoma cells. Cancer Res, 64(24): 9131–9138PubMedCrossRefGoogle Scholar
  61. Lu Y, Yu Q, Liu J H, Zhang J, Wang H, Koul D, McMurray J S, Fang X, Yung W K, Siminovitch K A, Mills G B (2003). Src family proteintyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem, 278(41): 40057–40066PubMedCrossRefGoogle Scholar
  62. Manal M E T, Hanachi P, Patimah I, Siddig I A, Fauziah O (2007). The effect of neem (Azadirachta indica) leaves extract on alphafetoprotein serum concentration, glutathione s-transferase and glutathione peroxidase activity in hepatocarcinogenesis induced rats. Int J Cancer Res, 3: 111–118CrossRefGoogle Scholar
  63. Manning G, Whyte D B, Martinez R, Hunter T, Sudarsanam S (2002). The protein kinase complement of the human genome. Science, 298(5600): 1912–1934PubMedCrossRefGoogle Scholar
  64. Martin G S (2004). The road to Src. Oncogene, 23(48): 7910–7917PubMedCrossRefGoogle Scholar
  65. McIlwain C C, Townsend D M, Tew K D (2006). Glutathione Stransferase polymorphisms: cancer incidence and therapy. Oncogene, 25(11): 1639–1648PubMedCrossRefGoogle Scholar
  66. McLachlan R W, Kraemer A, Helwani F M, Kovacs E M, Yap A S (2007). E-cadherin adhesion activates c-Src signaling at cell-cell contacts. Mol Biol Cell, 18(8): 3214–3223PubMedCrossRefGoogle Scholar
  67. McLean G W, Carragher N O, Avizienyte E, Evans J, Brunton V G, Frame M C (2005). The role of focal-adhesion kinase in cancer — a new therapeutic opportunity. Nat Rev Cancer, 5(7): 505–515PubMedCrossRefGoogle Scholar
  68. Nordberg J, Arnér E S (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 31(11): 1287–1312PubMedCrossRefGoogle Scholar
  69. Nyga R, Pecquet C, Harir N, Gu H, Dhennin-Duthille I, Régnier A, Gouilleux-Gruart V, Lassoued K, Gouilleux F (2005). Activated STAT5 proteins induce activation of the PI 3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding adapter. Biochem J, 390(Pt 1): 359–366PubMedGoogle Scholar
  70. Oakley A J, Lo Bello M, Mazzetti A P, Federici G, Parker M W (1997). The glutathione conjugate of ethacrynic acid can bind to human pi class glutathione transferase P1-1 in two different modes. FEBS Lett, 419(1): 32–36PubMedCrossRefGoogle Scholar
  71. Okamura T, Singh S, Buolamwini J, Haystead T, Friedman H, Bigner D, Ali-Osman F (2009a). Tyrosine phosphorylation of the human glutathione S-transferase P1 by epidermal growth factor receptor. J Biol Chem, 284(25): 16979–16989PubMedCrossRefGoogle Scholar
  72. Okamura T, Singh S, Buolamwini J K, Friedman H S, Bigner D D, Ali-Osman F (2009b). EGF receptor tyrosine kinase mediates a novel pathway of drug resistance in malignant gliomas via tyrosine phosphorylation and functional activation of GST P1. Neuro-oncol, 11(2): 218–218Google Scholar
  73. Okutani Y, Kitanaka A, Tanaka T, Kamano H, Ohnishi H, Kubota Y, Ishida T, Takahara J (2001). Src directly tyrosine-phosphorylates STAT5 on its activation site and is involved in erythropoietin-induced signaling pathway. Oncogene, 20(45): 6643–6650PubMedCrossRefGoogle Scholar
  74. Pani G, Giannoni E, Galeotti T, Chiarugi P (2009). Redox-based escape mechanism from death: the cancer lesson. Antioxid Redox Signal, 11(11): 2791–2806PubMedCrossRefGoogle Scholar
  75. Patskovsky Y V, Patskovska L N, Listowsky I, Almo S C(2009, Last Update on 24 February, 2009). Human Glutathione S-Transferase M1A-1A Catalyzes Formation of GSH-Metal Complexes. Retrieved 20 June, 2010, from http://www.pdb.org.
  76. Planchon S M, Waite K A, Eng C (2008). The nuclear affairs of PTEN. J Cell Sci, 121(Pt 3): 249–253PubMedCrossRefGoogle Scholar
  77. Playford M P, Schaller M D (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene, 23(48): 7928–7946PubMedCrossRefGoogle Scholar
  78. Polekhina G, Board P G, Blackburn A C, Parker M W (2001). Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity. Biochemistry, 40(6): 1567–1576PubMedCrossRefGoogle Scholar
  79. Ricono JM, Huang M, Barnes L A, Lau S K, Weis SM, Schlaepfer D D, Hanks S K, Cheresh D A (2009). Specific cross-talk between epidermal growth factor receptor and integrin alphavbeta5 promotes carcinoma cell invasion and metastasis. Cancer Res, 69(4): 1383–1391PubMedCrossRefGoogle Scholar
  80. Rodriguez P, Mitton B, Kranias E G (2005). Phosphorylation of glutathione-S-transferase by protein kinase C-alpha implications for affinity-tag purification. Biotechnol Lett, 27(23–24): 1869–1873PubMedCrossRefGoogle Scholar
  81. Rucci N, Susa M, Teti A (2008). Inhibition of protein kinase c-Src as a therapeutic approach for cancer and bone metastases. Anticancer Agents Med Chem, 8(3): 342–349PubMedCrossRefGoogle Scholar
  82. Schlaepfer D D, Hanks S K, Hunter T, van der Geer P (1994). Integrinmediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature, 372(6508): 786–791PubMedGoogle Scholar
  83. Scodelaro Bilbao P, Boland R, Santillán G (2010). ATP modulates transcription factors through P2Y2 and P2Y4 receptors via PKC/MAPKs and PKC/Src pathways in MCF-7 cells. Arch Biochem Biophys, 494(1): 7–14PubMedCrossRefGoogle Scholar
  84. Shah O J, Kimball S R, Jefferson L S (2002). The Src-family tyrosine kinase inhibitor PP1 interferes with the activation of ribosomal protein S6 kinases. Biochem J, 366(Pt 1): 57–62PubMedGoogle Scholar
  85. Singh S, Okamura T, Ali-Osman F (2010). Serine phosphorylation of glutathione S-transferase P1 (GSTP1) by PKCα enhances GSTP1-dependent cisplatin metabolism and resistance in human glioma cells. Biochem Pharmacol, 80(9): 1343–1355PubMedCrossRefGoogle Scholar
  86. Smeyne M, Boyd J, Raviie Shepherd K, Jiao Y, Pond B B, Hatler M, Wolf R, Henderson C, Smeyne R J (2007). GSTpi expression mediates dopaminergic neuron sensitivity in experimental parkinsonism. Proc Natl Acad Sci U S A, 104(6): 1977–1982PubMedCrossRefGoogle Scholar
  87. Sun G, Kemble D J (2009). To C or not to C: direct and indirect redox regulation of Src protein tyrosine kinase. Cell Cycle, 8(15): 2353–2355PubMedCrossRefGoogle Scholar
  88. Tars K, Larsson A K, Shokeer A, Olin B, Mannervik B, Kleywegt G J (2006). Structural basis of the suppressed catalytic activity of wildtype human glutathione transferase T1-1 compared to its W234R mutant. J Mol Biol, 355(1): 96–105PubMedCrossRefGoogle Scholar
  89. Thomas S M, Brugge J S (1997). Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol, 13(1): 513–609PubMedCrossRefGoogle Scholar
  90. Tice D A, Biscardi J S, Nickles A L, Parsons S J (1999). Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci U S A, 96(4): 1415–1420PubMedCrossRefGoogle Scholar
  91. Townsend D M, Findlay V J, Fazilev F, Ogle M, Fraser J, Saavedra J E, Ji X, Keefer L K, Tew K D (2006). A glutathione S-transferase piactivated prodrug causes kinase activation concurrent with Sglutathionylation of proteins. Mol Pharmacol, 69(2): 501–508PubMedCrossRefGoogle Scholar
  92. Townsend D M, He L, Hutchens S, Garrett T E, Pazoles C J, Tew K D (2008). NOV-002, a glutathione disulfide mimetic, as a modulator of cellular redox balance. Cancer Res, 68(8): 2870–2877PubMedCrossRefGoogle Scholar
  93. Townsend D M, Shen H, Staros A L, Gaté L, Tew K D (2002). Efficacy of a glutathione S-transferase pi-activated prodrug in platinumresistant ovarian cancer cells. Mol Cancer Ther, 1(12): 1089–1095PubMedGoogle Scholar
  94. Uys J D, Manevich Y, Devane L C, He L, Garret T E, Pazoles C J, Tew K D, Townsend D M (2010). Preclinical pharmacokinetic analysis of NOV-002, a glutathione disulfide mimetic. Biomed Pharmacother, 64(7): 493–498PubMedCrossRefGoogle Scholar
  95. Villafania A, Anwar K, Amar S, Chie L, Way D, Chung D L, Adler V, Ronai Z, Brandt-Rauf P W, Yamaizumii Z, Kung H F, Pincus M R (2000). Glutathione-S-Transferase as a selective inhibitor of oncogenic ras-p21-induced mitogenic signaling through blockade of activation of jun by jun-N-terminal kinase. Ann Clin Lab Sci, 30(1): 57–64PubMedGoogle Scholar
  96. Vosler P S, Chen J (2009). Potential molecular targets for translational stroke research. Stroke, 40(3 Suppl): S119–S120PubMedCrossRefGoogle Scholar
  97. Waldmann H, Levitzki A (2001). Protein tyrosine kinase inhibitors as therapeutic agents. Bioorganic Chemistry of Biological Signal Transduction, 211: 1–15CrossRefGoogle Scholar
  98. Waldron R T, Rey O, Zhukova E, Rozengurt E (2004). Oxidative stress induces protein kinase C-mediated activation loop phosphorylation and nuclear redistribution of protein kinase D. J Biol Chem, 279(26): 27482–27493PubMedCrossRefGoogle Scholar
  99. Wallez Y, Cand F, Cruzalegui F, Wernstedt C, Souchelnytskyi S, Vilgrain I, Huber P (2007). Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene, 26(7): 1067–1077PubMedCrossRefGoogle Scholar
  100. Wallez Y, Vilgrain I, Huber P (2006). Angiogenesis: the VE-cadherin switch. Trends Cardiovasc Med, 16(2): 55–59PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Chemistry Group, Faculty of EngineeringAtilim UniversityAnkaraTurkey

Personalised recommendations