Frontiers in Biology

, Volume 6, Issue 1, pp 76–81 | Cite as

3C-based methods to detect long-range chromatin interactions

Review

Abstract

Transcriptional regulatory regions are often located several thousand bases from the gene that they control. To function, the chromatin strand forms loops to juxtapose distal regions with the promoter. These long-range chromatin interactions have profound influences on the regulation of gene expression and mapping these interactions is currently a subject of intensive investigation. Chromosome conformation capture (3C) technology and its derivatives have been widely used to detect chromatin interactions and greatly contributed to understanding of the relationship between genome organization and genome function. Here we review these 3C-based methods for the study of long-range chromatin interactions and recent exciting findings obtained by using these technologies.

Keywords

chromatin interactions 3C gene regulation next-generation sequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Barski A, Cuddapah S, Cui K R, Roh T Y, Schones D E, Wang Z B, Wei G, Chepelev I, Zhao K (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4): 823–837CrossRefPubMedGoogle Scholar
  2. Boyle A P, Davis S, Shulha H P, Meltzer P, Margulies E H, Weng Z, Furey T S, Crawford G E (2008). High-resolution mapping and characterization of open chromatin across the genome. Cell, 132(2): 311–322CrossRefPubMedGoogle Scholar
  3. Cai S T, Lee C C, Kohwi-Shigematsu T (2006). SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet, 38(11): 1278–1288CrossRefPubMedGoogle Scholar
  4. Carroll J S, Liu X S, Brodsky A S, Li W, Meyer C A, Szary A J, Eeckhoute J, Shao W L, Hestermann E V, Geistlinger T R, Fox E A, Silver P A, Brown M (2005). Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell, 122(1): 33–43CrossRefPubMedGoogle Scholar
  5. Carter D, Chakalova L, Osborne C S, Dai Y F, Fraser P (2002). Longrange chromatin regulatory interactions in vivo. Nat Genet, 32(4):623–626CrossRefPubMedGoogle Scholar
  6. Dekker J, Rippe K, Dekker M, Kleckner N (2002). Capturing chromosome conformation. Science, 295(5558): 1306–1311CrossRefPubMedGoogle Scholar
  7. Dostie J, Dekker J (2006). Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc, 2, 988–1002CrossRefGoogle Scholar
  8. Dostie J, Richmond T A, Arnaout R A, Selzer R R, Lee WL, Honan T A, Rubio E D, Krumm A, Lamb J, Nusbaum C, Green R D, Dekker J (2006). Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res, 16(10): 1299–1309CrossRefPubMedGoogle Scholar
  9. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim Y J, Lee C, Shendure J, Fields S, Blau C A, Noble W S (2010). A threedimensional model of the yeast genome. Nature, 465(7296): 363–367CrossRefPubMedGoogle Scholar
  10. ENCODE project consortium (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 306(5696): 636–640CrossRefGoogle Scholar
  11. Fullwood M J, Liu M H, Pan Y F, Liu J, Xu H, Mohamed Y B, Orlov Y L, Velkov S, Ho A, Mei P H, Chew E G, Huang P Y, Welboren W J, Han Y, Ooi H S, Ariyaratne P N, Vega V B, Luo Y, Tan P Y, Choy P Y, Wansa K D, Zhao B, Lim K S, Leow S C, Yow J S, Joseph R, Li H, Desai K V, Thomsen J S, Lee Y K, Karuturi R K, Herve T, Bourque G, Stunnenberg H G, Ruan X, Cacheux-Rataboul V, Sung W K, Liu E T, Wei C L, Cheung E, Ruan Y (2009). An oestrogen-receptoralpha-bound human chromatin interactome. Nature, 462(7269): 58–64CrossRefPubMedGoogle Scholar
  12. Göndör A, Ohlsson R (2009). Chromosome crosstalk in three dimensions. Nature, 461(7261): 212–217CrossRefPubMedGoogle Scholar
  13. Horike S, Cai S T, Miyano M, Cheng J F, Kohwi-Shigematsu T (2005). Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet, 37(1): 31–40PubMedGoogle Scholar
  14. Johnson D S, Mortazavi A, Myers R M, Wold B (2007). Genome-wide mapping of in vivo protein-DNA interactions. Science, 316(5830): 1497–1502CrossRefPubMedGoogle Scholar
  15. Kim S I, Bresnick E H, Bultman S J (2009). BRG1 directly regulates nucleosome structure and chromatin looping of the alpha globin locus to activate transcription. Nucleic Acids Res, 37(18): 6019–6027CrossRefPubMedGoogle Scholar
  16. Lajoie B R, van Berkum N L, Sanyal A, Dekker J (2009). My5C: web tools for chromosome conformation capture studies. Nat Methods, 6 (10): 690–691CrossRefPubMedGoogle Scholar
  17. Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007). Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet, 8(2): 104–115CrossRefPubMedGoogle Scholar
  18. Lieberman-Aiden E, van Berkum N L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O, Sandstrom R, Bernstein B, Bender M A, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny L A, Lander E S, Dekker J (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950): 289–293CrossRefPubMedGoogle Scholar
  19. Misteli T (2007). Beyond the sequence: cellular organization of genome function. Cell, 128(4): 787–800CrossRefPubMedGoogle Scholar
  20. Murrell A, Heeson S, Reik W (2004). Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet, 36(8): 889–893CrossRefPubMedGoogle Scholar
  21. Palstra R J, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W (2003). The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet, 35(2): 190–194CrossRefPubMedGoogle Scholar
  22. Schones D E, Cui K, Cuddapah S, Roh T Y, Barski A, Wang Z, Wei G, Zhao K (2008). Dynamic regulation of nucleosome positioning in the human genome. Cell, 132(5): 887–898CrossRefPubMedGoogle Scholar
  23. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, deWit E, van Steensel B, de Laat W (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 38(11): 1348–1354CrossRefPubMedGoogle Scholar
  24. Spilianakis C G, Flavell R A (2004). Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol, 5 (10): 1017–1027CrossRefPubMedGoogle Scholar
  25. Spilianakis C G, Lalioti M D, Town T, Lee G R, Flavell R A (2005). Interchromosomal associations between alternatively expressed loci. Nature, 435(7042): 637–645CrossRefPubMedGoogle Scholar
  26. Splinter E, Heath H, Kooren J, Palstra R J, Klous P, Grosveld F, Galjart N, de Laat W (2006). CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev, 20(17): 2349–2354CrossRefPubMedGoogle Scholar
  27. Tiwari V K, Cope L, McGarvey K M, Ohm J E, Baylin S B (2008). A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations. Genome Res, 18(7): 1171–1179CrossRefPubMedGoogle Scholar
  28. Tolhuis B, Palstra R J, Splinter E, Grosveld F, de Laat W (2002). Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell, 10(6): 1453–1465CrossRefPubMedGoogle Scholar
  29. Vakoc C R, Letting D L, Gheldof N, Sawado T, Bender M A, Groudine M, Weiss MJ, Dekker J, Blobel G A (2005). Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell, 17(3): 453–462CrossRefPubMedGoogle Scholar
  30. Wang Z, Schones D E, Zhao K (2009). Characterization of human epigenomes. Curr Opin Genet Dev, 19(2): 127–134CrossRefPubMedGoogle Scholar
  31. Würtele H, Chartrand P (2006). Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res, 14(5): 477–495CrossRefPubMedGoogle Scholar
  32. Xu N, Tsai C L, Lee J T (2006). Transient homologous chromosome pairing marks the onset of X inactivation. Science, 311(5764): 1149–1152CrossRefPubMedGoogle Scholar
  33. Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu K S, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R (2006). Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet, 38(11): 1341–1347CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratory of Molecular Immunology, National Heart, Lung and Blood InstituteNIHBethesdaUSA

Personalised recommendations